AQPI: RAP/HRRR Model Forecasts of Atmospheric River Events over the San Francisco Bay Area

Jason M. English1,2, David D. Turner1, Melinda Marquis1, Eric P. James1,2, Trevor I. Alcott1, William R. Moninger1,2, Janice L. Bytheway1,2, Hongli Wang1,2

1NOAA Earth System Research Laboratory, Global Systems Division, Boulder, CO
2Correspondence: jason.english@noaa.gov
3Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO

1. Introduction

- Atmospheric Rivers (ARs) transport moisture from the tropics and bring heavy rain to higher latitudes
- ARs are responsible for roughly 40% of California's annual precipitation
- Better forecasts of rain timing/intensity, streamflow, reservoirs, and storm surge can minimize human, ecosystem, & economic impacts

2. The AQPI Project

- Goal of AQPI (Advanced Quantitative Precip. Info): improve California early warning through research transition, monitoring, and prediction of precipitation, streamflow, and storm surge
- Deploy & assimilate AQPI radar & srfc met instruments; evaluate model predictions of precipitation, streamflow, and storm surge
- 4-year grant awarded by the DWR to multiple partners: NOAA, CSU, USGS, DWR, and NWS

3. NOAA GSD Research Plan

NOAA GSD Role: Evaluate/improve QPF from RAP/HRRR model over AQPI region

Science Question: How well do different versions of the RAP/HRRR model forecast various AR events over California?

Approach:
- Select 6-8 AR events that have occurred
- Download operational & real-time X RAP/HRRR output, & run retrospective simulations with the latest RAP/HRRR model version
- Compare model forecasts of precip and other metrics to available observations

Metrics:
- Precip (Model QPF vs Observed QPE): Stage IV; Mesonet contingency tables; San Jose X-band domain
- Winds, T, water vapor: PSD ARO Profilers (Bodega Bay, Pt Sur)

4. RAP/HRRR Model Versions

RAP/HRRR is a high-resolution mesoscale model for short-term weather forecasts (0-36h)
NOAA/ESRL/GSD develops improved versions of RAP/HRRR and release radar files in NCEP-operations every ~2 years
Currently RAPv4/HRRRv4 is operational; RAPv5/HRRRv4 is under development

5. Case Study: 22-Mar-2018

A. QPF/QPE Comparisons (Stage IV & Mesonet)

RAPv5/HRRRv4

B. QPE/QPF Comparisons in the San Jose Area

HRRRv2 versus HRRRv3
HRRRv4

6. Case Study: 14-Feb-2019

A. Stage-IV Comparisons (6h accum prec)

- Both HRRRv2 and HRRRv3 overestimate rainfall in the first event (21-Mar); underestimate the "main event" (22-Mar)
- Area average accumulation varies widely between various QPE (Quantitative Precipitation Estimation) sources, highlighting the challenges with trying to understand precip
- QPE from the Sand Jose X-band radar is in the middle of the pack of QPE estimates

7. Additional Cases (in progress)

- For 2-Feb, QPF for both HRRR versions compare favorably to Stage-IV; HRRRv4 better
- For 26-Feb, QPF for both HRRR versions compare well in the north but a wet bias in the south
- As with previous cases, HRRR generally has a wet bias at high altitudes and dry bias at low altitudes (with some exceptions)

8. Summary

- QPF evaluated for four AR events for multiple models (HRRRv2, HRRRv3, HRRRv4) against multiple precip measurements (X-band & MRMS radars, Mesonet & SWCA gauges)
- All versions of the HRRR generally predict rainfall spatial distribution and accumulation well, but tend to overpredict high altitude regions and underpredict low altitude regions
- HRRRv4 outperforms HRRRv3 in some but not all cases
- QPE measures vary widely, highlighting challenges with evaluating models

9. Next Steps

- Further explore causes of model biases; compare to additional observations (More ARO sites; Oakland soundings; satellite precipitable water)
- Conduct HRRR retros with and without local X-band radar in the data assimilation to understand its value for improving HRRR forecasts
- Evaluate additional 2-4 cases to understand statistics