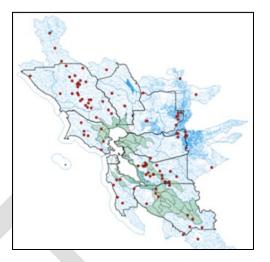
NATIONAL WATER MODEL RETROSPECTIVE SIMULATION ASSESSMENT AQPI CASE STUDY – TRIBUTARY HYDROLOGIC MODEL

Abstract

A baseline verification of the National Water Model (NWM) using historical data for a retrospective simulation.

Lynn E. Johnson and Jungho Kim 6 September 2019

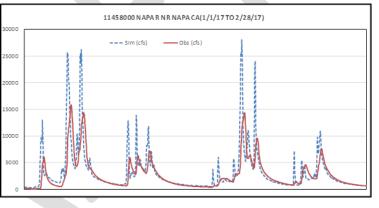


AQPI CASE STUDY – TRIBUTARY HYDROLOGIC MODEL NATIONAL WATER MODEL RETROSPECTIVE SIMULATION ASSESSMENT

SUMMARY

Background

APQI Hydro and NWM: The AQPI project is using the NOAA National Water Model (NWM, https://water.noaa.gov/) as the tributary hydrologic forecast tool. The NWM provides very high-resolution forecasts of flood runoff computed for a 1-km grid scale and for about 11,000 stream reaches in the



AQPI region. It provides three forecast configurations (short- (0 to 18 hrs; 1-hr update), medium- (0 to 10 days; 6-hr update) and long-range (0 to 30 days; 1-day update)). The NWM simulates land surface response to precipitation and soil moisture dynamics but does not well represent reservoir operations

or other water management activities.

Current Hydrologic Forecasting Practices and Needs

Flood mitigation and water managers in the SF Bay area use a mix of information sources and procedures to support their efforts to protect lives and reduce damages. Most use the CNRFC forecasts at some 24 stream gage forecast locations issued once per day with more frequent updates during

storms. Monitoring of precipitation occurrence and forecasts is made using NWS QPE and QPF products, local ALERT rain gages and TV. Data downloads for local models is made by "scraping" various web sites, collating the data and formatting to input into their procedures. Flood and flash flood warnings are coordinated with the NWS WFOs and then through the county Emergency Operations Centers.

Baseline Verification

The intent of this report is to document NWM performance based on simulation using archived and quality checked precipitation data for the period 2013 to 2017. This verification is based on simulation results for the January – February 2017 which had several intense rainfall events resulting in significant flood flows. The NWM simulated flows are compared to USGS gaging station records to assess how well the simulation corresponds to the gaged flows. Various statistical measures are used to summarize this comparison. To help assure that the hydrologic forecasts are useful, the accuracy of the NWM needs to be characterized and then reviewed by the agencies who will use it. Time series graphics of the NWM and USGS gaged flows over plotted for the January-February 2017 period provide a visualization of the comparison between the two data sets.

Outcomes

Basin characteristics: There are 92 USGS stream gaging stations in the AQPI region; of these we identified 47 stations that have flow records that could be compared to the NWM. The basins average 133 sq. mi. in area and range from 1338 sq. mi. down to 5.5 sq. mi. The basins' rainfall averages 37 in. and ranges from 64 in. down to 21 in. Basin slopes average 21% and range from 30% down to 6%. Thirty-two (68%) of the basins can be considered to have little to no regulation by dams, the other 15 (32%) basins have significant regulation that influences downstream flows.

Verification Statistics: Various statistical metrics were computed in the comparison of simulated with gaged flows, including correlation coefficient (CC), percent bias (PBIAS) and Nash-Sutcliff Efficiency (NSE) coefficient. These were combined into a single metric called Score17 scaled from 0 to 5 which was used to compare across all stations and with basin characteristics; a Score 17 in the range 0 to 1 was rated Poor; a Score17 greater than 4 was rated Excellent.

Significant Findings:

Overall assessment of NWM performance is summarized by tabulating the frequency of Score17 values across all <u>unregulated</u> sites. To summarize:

- 79% of the sites were rated Moderate or better, 45% were rated Good or better, and 18% were rated Excellent. The regulated sites did not do as well but still some still showed useful performance; of the 15 regulated sites 7 (47%) showed Moderate performance, 8 (53%) were Poor or Mediocre.
- The Score17 performance metric was compared to various basin characteristics, including precipitation, drainage area, basin slope and impervious soils; in general, there was no strong correlation with any of these factors. There were two stations located in a large wetland area that the NWM performed poorly for; this was attributed to poor routing of flows which did not reproduce peak flow attenuation that occurs. There was some indication that the NWM did better for higher elevation basins.
- Comparison of the Score17 with basin storage confirmed that the NWM does poorly in heavily regulated basins, but several basins having moderate reservoir regulation performed at the Moderate level.
- For the unregulated basins the PBIAS metric for some sites, which measures total runoff volume, showed large positive and negative values. For these stations having low Score17 values, performance is attributed to poor rainfall mapping, either too much rain or too little. Stations with high positive or negative PBIAS are located mainly in Alameda and San Mateo counties, which have relatively lower elevations.
- Related assessment of precipitation mapping in the AQPI region (Chen at al 2018) has identified that the current NEXRAD radar coverage is too high in altitude, either because the radar is too high (e.g. KMUX) and/or the radar beam is blocked by mountainous terrain (KDAX). This may explain why there was some poor NWM performance for basins at lower altitude and better performance at higher altitude basins.

Review and Feedback:

Given this NWM baseline assessment and the (forthcoming) companion forecast assessment, it is intended that flood and other water management agencies review these to confirm that the data

presented is correct and that the performance characterization is appropriate. This could provide a foundation for "believability" by users.

What's Next

Forecast Assessment: A follow on assessment will be conducted to determine how well the NWM does in forecast mode. Note the retrospective assessment was a comparative exercise and did not involve forecasts.

Real-Time Operations: The AQPI prototype will be deployed for real-time operations for the upcoming winter storm season 2019-2020. This will provide opportunity for users to access the hydrologic forecasts and consider how to incorporate these into their flood mitigation and water management operations. Some jurisdictions are requesting watershed-specific precipitation accumulation products to fit with their current flash flood alerting tools; this is being done.

AQPI CASE STUDY – TRIBUTARY HYDROLOGIC MODEL NATIONAL WATER MODEL RETROSPECTIVE SIMULATION ASSESSMENT

BACKGROUND

AQPI staff have conducted a baseline verification of the National Water Model (NWM) using historical data for a retrospective simulation. The NWM 1-hour streamflow estimates were compared to USGS stream gage records to assess accuracy using various statistical metrics. Flow records for approximately 50 sites were examined in detail and factors were identified that impact simulation accuracy, including precipitation amount and location, watershed characteristics, soil moisture and water management. It is noted that the NWM retrospective simulation did not represent reservoir regulation, nor were USGS gage readings assimilated to establish initial conditions as is done with the real-time NWM forecast modeling. An overall summary is presented along with detailed assessment for each site.

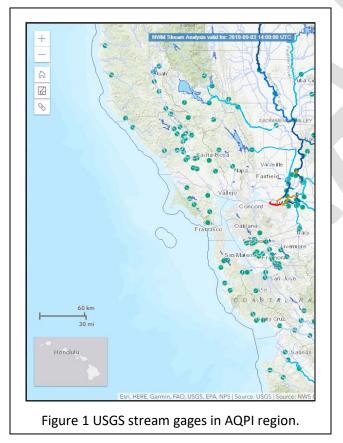
NWM Retrospective Simulation

The NWM is a distributed hydrologic model which computes the hydrologic balance on a 250 m grid, aggregates excess precipitation to a 1 km grid, and routes these flood flows using the NHD-PlusV2 stream network. There are approximately 11,000 NWM stream reaches in the AQPI region. The system updates to include USGS gaged flows (-3 to 0 hrs), along with three forecast configurations (short- (0 to 18 hrs; 1-hr update), medium- (0 to 10 days; 6-hr update) and long-range (0 to 30 days; 1-day update). The NWM can provide a variety of flood forecast products, including hydrographs at any location (peak flow, time-to-peak, duration of high flow), and grid displays of streamflow and soil moisture.

The NOAA National Water Model Reanalysis dataset contains output from a 25-year retrospective simulation (January 1993 through December 2017) of version 1.2 of the National Water Model. We used data for the period 2013 to 2017, with emphasis placed on the January – February 2017 flood period. This simulation used observed rainfall as input and ingested other required meteorological input fields from a weather Reanalysis dataset. The output frequency and fields available in this historical NWM dataset differ from those contained in the real-time forecast model. One application of this dataset is to provide historical context to current real-time streamflow, soil moisture and snowpack NWM conditions. The Reanalysis data can be used to infer flow frequencies and perform temporal analyses with hourly streamflow output and 3-hourly land surface output. The long-term dataset can also be used in the development of end user applications which require a long baseline of data for system training or verification purposes. Access to these data can be found at: https://registry.opendata.aws/nwm-archive/.

NLDAS Precipitation Forcing

The North American Land Data Assimilation System (NLDAS, <u>https://ldas.gsfc.nasa.gov/nldas/</u>) is currently running operationally in near real-time (~4 day lag) on a 1/8th-degree grid with an hourly timestep over central North America (25-53 North). (Note: for the APQI region at approximately 38d N, - 122d W, a 1/8th-degree grid has sides 8.6 mi x 6.8 mi, and area 59 sq. mi.) Retrospective hourly/monthly NLDAS datasets extend back to January 1979. NLDAS constructed a forcing dataset from a daily gauge-based precipitation analysis (temporally disaggregated to hourly using Stage II radar data), bias-corrected shortwave radiation, and surface meteorology re-analyses to drive the NWM.



ASSESSMENT OF NWM RETROSPECTIVE SIMULATION

Description of Assessment Approach

The NWM simulation results for the 2-month period January through February 2017 were examined in detail. This period was selected because there were several flood and high flow events which at several USGS gages produced the flood of record. In addition, the preceding December had several significant rainfall events which would have wet watershed soils so that rain abstractions during January-February would be minimized in comparison to dry conditions.

The assessment approach involved comparing the NWM simulation time series with the streamflow time series recorded at a USGS gage site. There were approximately 50 USGS gage sites where the comparison could be made (Figure X). The gage sites shown are those that are involved with the NWM and are active recording gages. In total there are 91 USGS gaging stations in the AQPI region, but not all of them are currently active or did not have records corresponding to the NWM retrospective simulation period 2012 to 2017. Also, some stations are located on streams or river reaches which are used strictly for water management and for which the NWM simulation did not apply. Note that the NWM simulation did not represent reservoir storage or other water management operations. For this NWM verification records for 46 USGS gaging stations were used.

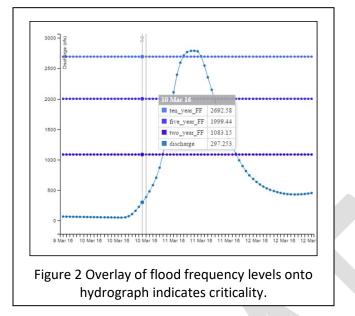
USGS Gages-II Basin Characteristics

Basic information on watershed characteristics associated with each USGS gage site was obtained from the so-called Gages-II Basin Characteristics report and database (Falcone 2011,

https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml). This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the USGS. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009. The geospatial data include a number of watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, and topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The general categories of basin data used here include: BASIN ID, BASIN_CLASSIFICATION, HYDROMOD_DAMS, CLIMATE, SOILS and TOPO. A complete listing of the variables is presented in Appendix A. Table 1 lists these stations along with selected basin characteristics taken from the Gages-II database.

Of interest is to examine whether there is any aspect of the basins that influences the accuracy of the NWM forecasts. For this purpose, the basin characteristics were generalized to five (5) categories: 1) Precipitation, 2) Orography, 3) Topography, 4) Soil, and 5) Water Management. Precipitation (1) is the mean annual precipitation for the basin, determined from the PRISM (Daly et al 2004, http://prism.oregonstate.edu/). A 1-5 index was generated by ranking the basin precipitation between the maximum and minimum of the AQPI region. Orography (2) was characterized as the ratio between the elevation of the basin divided by the elevation of the gage; this ratio was scaled between 1-5. A topography index (3) was determined using the BASIN SLOPE and scaling to 1-5 bounded by the maximum and minimum slopes for the AQPI region. The Soils (4) index was scales to 1-5 using the percentage of HSG4 (Hydrologic Soil Group 4) in the basin; HSG4 is the most impervious of four soil classifications. Water Management was scaled to 1-5 using the ratio Storage/Basin Area across all sites in the AQPI region. The example Site Summary presented above shows the basin factor indices and an annotation on its significance.

Table 1 Listing of USGS gaging station used for NWM verification.


STATION ID	STATION NAME	DRAINAGE AREA [mi^2]	COUNTY	PPTavg Basin [in]	BASIN_ELE V_FT	SLOPE [%]	HGD [%]	NDAMS_2 009	STOR [KAF]	HDI score
11162500	PESCADERO C NR PESCADERO CA	45.9	San Mateo	36.4	1136	26.7	22.0	1	0.0	2.1
11162570	SAN GREGORIO C A SAN GREGORIO CA	51.0	San Mateo	35.0	1043	22.3	10.0	0	0.0	0.8
11162620	PILARCITOS C BL STONE DAM NR HILLSBOROUGH CA	6.7	San Mateo	41.0	1081	24.3	17.9	1	3.1	2.5
11162630	PILARCITOS C A HALF MOON BAY CA	26.9	San Mateo	35.3	780	25.0	18.6	2	3.1	2.3
11164500	SAN FRANCISQUITO C A STANFORD UNIVERSITY CA	37.7	Santa Clara	33.3	955	16.8	26.8	3	1.9	3.5
11169025	GUADALUPE R ABV HWY 101 A SAN JOSE CA	171.9	Santa Clara	30.4	879	16.1	55.3	12	44.2	5.0
11169500	SARATOGA C A SARATOGA CA	8.8	Santa Clara	42.0	1789	30.2	34.8	0	0.0	0.8
11169800	COYOTE C NR GILROY CA	109.2	Santa Clara	24.0	1981	25.6	72.1	2	0.3	0.6
11172945	ALAMEDA C AB DIV DAM NR SUNOL CA	33.6	Alameda	24.6	2671	26.7	65.0	0	0.0	0.2
11173200	ARROYO HONDO NR SAN JOSE CA	76.9	Santa Clara	24.5	2680	26.7	73.3	2	0.5	0.4
11173510	ALAMEDA C BL CALAVERAS C NR SUNOL CA	139.3	Alameda	24.5	2434	25.7	69.2	3	100.5	2.9
11173575	ALAMEDA C BL WELCH C NR SUNOL CA	148.8	Alameda	24.5	2357	25.8	68.8	3	100.5	2.9
11174000	SAN ANTONIO C NR SUNOL CA	39.1	Alameda	22.7	1617	21.9	68.7	1	50.5	4.0
11176400	ARROYO VALLE BL LANG CN NR LIVERMORE CA	130.7	Alameda	22.6	2473	23.4	78.0	0	0.0	0.2
11176900	ARROYO DE LA LAGUNA A VERONA CA	403.3	Alameda	21.0	1506	16.1	68.6	2	77.2	4.4
11179000	ALAMEDA C NR NILES CA	632.7	Alameda	22.0	1669	19.0	67.9	6	228.1	4.6
11180500	DRY C A UNION CITY CA	9.4	Alameda	26.5	928	19.4	58.0	0	0.0	0.6
11180825	SAN LORENZO C AB DON CASTRO RES NR CASTRO V CA	18.0	Alameda	26.9	920	21.4	58.0	0	0.0	0.8
11180900	CROW C NR HAYWARD CA	10.5	Alameda	26.4	847	20.8	58.0	0	0.0	0.6
11180960	CULL C AB CULL C RES NR CASTRO VALLEY CA	5.8	Alameda	26.7	847	23.3	58.0	0	0.0	0.8
11181000	SAN LORENZO CA HAYWARD CA	37.8	Alameda	26.4	846	20.9	58.0	2	0.0	3.1
11181040	SAN LORENZO C A SAN LORENZO CA	46.9	Alameda	25.7	740	18.0	57.4	4	0.9	3.5
11182500	SAN LORENZO CA SAN LORENZO CA SAN RAMON CA SAN RAMON CA	46.9 6.1	Contra Costa	26.5	1141	21.6	57.4 64.5	4	0.9	3.5 1.0
11456000	NAPA RIVER NEAR ST. HELENA CALIF	82.0		20.5 41.1	1001	21.6		4	0.0	2.7
	NAPA RIVER NEAR ST. HELENA GALIF	218.7	Napa	37.8	907	20.9	40.1 38.3	4 17	3.4 40.1	2.7
11458000			Napa			22.2		0	0.0	-
11458433		14.2	Sonoma	45.5	1352	17.6	43.0	3	0.0	1.7 2.5
11458500		58.1	Sonoma	42.5	988	-	59.6	3 1		-
11459500		17.9	Marin	40.5	529	19.5	42.8		4.4	3.1
11460000	CORTE MADERA CAROSS CA	18.3	Marin	42.7	514	21.4	49.2	1	0.6	3.5
11460400	LAGUNITAS C A SP TAYLOR STATE PK CA	34.3	Marin	46.1	919	25.4	34.0	4	46.4	4.4
11460600	LAGUNITAS C NR PT REYES STATION CA	81.7	Marin	42.5	729	23.1	34.3	6	68.9	3.5
11460750	WALKER C NR MARSHALL CA	31.3	Marin	41.4	616	20.8	34.5	3	10.8	2.5
11461000	RUSSIAN R NR UKIAH CA	100.2	Mendocino	46.7	1471	20.6	23.8	3	0.7	1.7
11461500	EF RUSSIAN R NR CALPELLA CA	92.2	Mendocino	45.1	1632	20.9	32.4	1	0.2	2.3
11462500	RUSSIAN R NR HOPLAND CA	362.4	Mendocino	45.5	1526	21.1	27.5	8	156.5	3.8
11463170	BIG SULPHUR C A G RESORT NR CLOVERDALE CA	13.1	Sonoma	58.6	2848	28.9	47.3	0	0.0	0.0
11464000	RUSSIAN R NR HEALDSBURG CA	793.9	Sonoma	45.6	1417	21.3	29.8	31	160.7	3.3
11465660	COPELAND C A ROHNERT PARK CA	5.5	Sonoma	43.5	921	10.0	84.3	0	0.0	2.3
11465680	LAGUNA DE SANTA ROSA A STONY PT RD NR COTATI CA	41.4	Sonoma	37.6	378	6.0	75.2	0	0.0	2.9
11466170	MATANZAS C A SANTA ROSA CA	21.6	Sonoma	41.7	724	12.2	73.4	3	2.3	3.8
11466200	SANTA ROSA C A SANTA ROSA CA	55.9	Sonoma	42.4	849	15.8	63.5	6	6.1	3.3
11466320	SANTA ROSA C A WILLOWSIDE RD NR SANTA ROSA CA	77.0	Sonoma	40.4	670	12.2	55.1	9	7.0	4.2
11466800	MARK WEST C NR MIRABEL HEIGHTS CA	251.8	Sonoma	39.6	509	9.2	52.1	21	12.8	5.0
11467000	RUSSIAN R NR GUERNEVILLE CA	1337.9	Sonoma	45.3	1110	18.8	31.5	60	624.3	4.2
11467200	AUSTIN C NR CAZADERO CA	62.8	Sonoma	64.0	1011	28.9	12.7	0	0.0	0.6
11467510	SF GUALALA R NR THE SEA RANCH CA	161.5	Sonoma	57.2	1024	26.2	6.1	3	0.8	1.5
	Count=	46		46	46	46	46	46	46	46
	Max =	1337.9		64.0	2848	30.2	84.3	60	624.3	5.0
	Min =	5.5		21.0	378	6.0	6.1	0	0.0	0.0
	Average =	133.3		36.6	1238	20.9	48.2	5	38.2	2.5

For each USGS gage site a summary description of the watershed was prepared to include:

- Watershed description a general review of geography and characteristics
- Drainage area
- Comments the USGS gage site descriptions notes factors which may influence flows, usually water management activities such are reservoir operations and diversions.
- USGS Gages-II watershed characteristics (see description below).
- Flood flow frequency levels flood frequency levels (e.g. 100-year, 50-year, etc.) were derived for each site based on drainage area and precipitation characteristics (. These flow levels are intended

to be compared to simulated and observed flows to assess the relative magnitude or criticality, as illustrated in Figure 2.

- Performance metrics for the 2-month period 1 January to 28 February 2017:
 - Correlation coefficient (CC) measures the strength and direction of a linear relationship between two variables on a scatterplot. The value of CC is always between +1 (perfect) and -1 (perfect opposite).
 - PBIAS Percent bias, the difference in runoff volume between observed and simulated flow accumulation periods. Values near zero are good. This metric is considered a total period measure of rainfall.
 - Nash-Sutcliff Efficiency (NSE) coefficient represents how well the simulated hydrograph matches the observed flows for all time steps. The closer the NSE is to 1, the more accurate the model is; values less than zero are meaningless. In contrast to CC, the NSE penalizes large differences.

Error Indices	Acronym	Equation
Correlation Coefficient	СС	$\frac{\sum(Q_{sim}-\overline{Q_{sim}})(Q_{obs}-\overline{Q_{obs}})}{\sqrt{\sum(Q_{sim}-\overline{Q_{sim}})^2}\sqrt{\sum(Q_{obs}-\overline{Q_{obs}})^2}}$
Nash-Sutcliffe Efficiency	NSE	$1 - \frac{\sum(Q_{sim} - Q_{obs})^2}{\sum(Q_{obs} - \overline{Q_{obs}})^2}$
PBIAS	PBIAS	$\left(\sum (Q_{obs} - Q_{sim})\right) \div \sum (Q_{obs} + Q_{sim}) \times 100 \ (\%)$

 A composite performance index was computed as the weighted sum of the CC, PBIAS and NSE where each metric was scaled to a range 1 to 5. The matrix below illustrates the computation of the Score17 and Assess17 categorization.

Metric		Con	nposite Sco	ore				
Wethe	Max	Min	5scale	Wt	5s*Wt	From	То	Assess17
CC	1.0	0.0	4.4	0.1	0.4	0	1	Poor
Pbias	0%	100%	4.6	0.5	2.3	1	2	Mediocre
NSE	1.0	0.0	3.7	0.4	1.5	2	3	Moderate
			Score 17 =		4.2	3	4	Good
		ŀ	Assess17 =		Excellent	4	5	Excellent

- Another performance index, called the HAT (for Hydrologic Assessment Tool) was tabulated. The HAT used a combination of machine learning and clustering analysis to provide an assessment of NWM performance divided into 4 categories: unsatisfactory (US), satisfactory (S), good (G), and very good (VG). The HAT index used a 3-point scale. A more detailed description of the HAT procedure is presented in Appendix X.
- Time series graphic of the NWM and USGS gaged flows over plotted for the January-February 2017 period provides a visualization of the comparison between the two data sets.
- An example of a gage site report follows (Figure 3). Note that not all sites are excellent as this was rated.

The NWM performance statistics were tabulated for each USGS gaging station; results are presented in Table 2.

11456000 NAPA R NR ST HELENA CA

Site Description:

The Napa River rises in northwestern Napa County just south of the summit of Mt. St. Helena in the Mayacamas Mountains of the California Coast Ranges. It descends the southern slope of Mt. St. Helena to Kimball Canyon Dam. It flows south for 4 miles (6 km), entering the head of the slender Napa Valley north of Calistoga. In the valley, it flows southeast past Calistoga, St Helena and thence to Napa near SF Bay.

Remarks from USGS Site Report:

Some diversion for agriculture and regulation by Bell Canyon Res (2500 af). Small diversions upstream from station for irrigation of about 1,500 acres.

Watershed Factors:				
Precipitation:	Pavg [in] =	41.1	Prank =	2.5
			Rainfall mapping se	eems good
Orography:	ORO [%] =	15%	OROrank =	2.0
			Rainfall location consist	ently good
Topography:	SL [%] =	20.9	SLrank =	3.3
			Moder	rate slopes
Soils:	HGD [%] =	40.1	HGDrank =	2.2
			Moderately imper	vious soils
Water management:	STOR [kaf] =	3.4	DISTURB =	2.5
	Some regulation, o	loes not s	eem to impact peak flow	simulation

Gage #	11456000
Gage Name	NAPA R NR ST HELENA CA
County	Napa
Area [mi^2]	79
CNRFC	SHEC1
Qpeak [cfs]	18,300
Qpeak Year	2005
Q500 [cfs]	21228
Q200 [cfs]	18323
Q100 [cfs]	16169
Q50 [cfs]	13890
Q25 [cfs]	11671
Q10 [cfs]	8739
сс	0.89
PBias	8%
NSE	0.75
Score (1-5)	4.23
Assess17	Excellent
HAT (1-3)	1.29

Assessment of NWM Performance:

The NWM simulation showed generally very good results although most peak flows were slightly overestimated. Perhaps the peaks are reduced when flows through Bell Canyon Reservoir. Water balance very good.

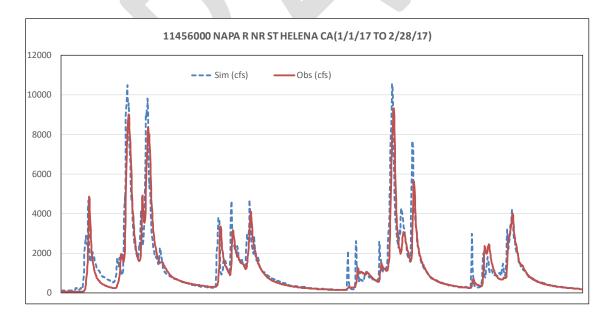
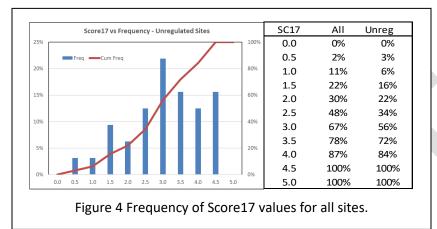


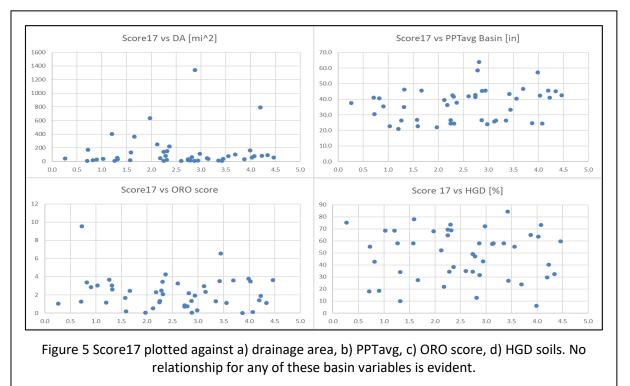
Figure 3 Example of NWM verification for a USGS gage site.

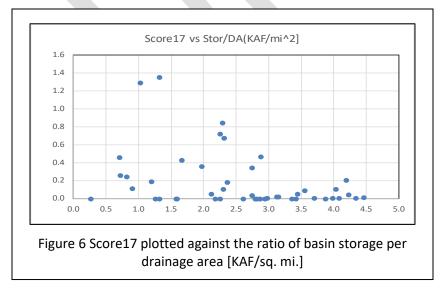
Table 2 Listing of NWM performance statistics.


STATION ID	STATION NAME	DRAINAGE AREA [mi^2]	сс	PBias	NSE	Score17 (1-5)	Assess	HAT (1-3)
11162500	PESCADERO C NR PESCADERO CA	45.9	0.87	54%	0.30	2.18	Moderate	2.22
11162570	SAN GREGORIO C A SAN GREGORIO CA	51.0	0.66	60%	-1.05	1.32	Mediocre	1.50
11162620	PILARCITOS C BL STONE DAM NR HILLSBOROUGH CA	6.7	0.27	-77%	-1.17	0.71	Poor	0.50
11162630	PILARCITOS C A HALF MOON BAY CA	26.9	0.52	-74%	-0.61	0.90	Poor	0.50
11164500	SAN FRANCISQUITO C A STANFORD UNIVERSITY CA	37.7	0.67	11%	0.44	3.44	Good	1.60
11169025	GUADALUPE R ABV HWY 101 A SAN JOSE CA	171.9	0.54	82%	-7.88	0.72	Poor	1.75
11169500	SARATOGA C A SARATOGA CA	8.8	0.56	7%	-0.04	2.60	Moderate	1.22
11169800	COYOTE C NR GILROY CA	109.2	0.88	31%	0.41	2.98	Moderate	2.22
11172945	ALAMEDA C AB DIV DAM NR SUNOL CA	33.6	0.88	-23%	0.75	3.87	Good	1.41
11173200	ARROYO HONDO NR SAN JOSE CA	76.9	0.90	-19%	0.79	4.07	Excellent	2.44
11173510	ALAMEDA C BL CALAVERAS C NR SUNOL CA	139.3	0.68	-24%	-1.99	2.25	Moderate	1.61
	ALAMEDA C BL WELCH C NR SUNOL CA	148.8	0.72	-22%	-1.88	2.32	Moderate	1.48
	SAN ANTONIO C NR SUNOL CA	39.1	0.09	-61%	-0.04	1.03	Mediocre	0.00
11176400	ARROYO VALLE BL LANG CN NR LIVERMORE CA	130.7	0.82	56%	0.04	1.59	Mediocre	1.04
11176900	ARROYO DE LA LAGUNA A VERONA CA	403.3	0.89	70%	-5.03	1.20	Mediocre	1.11
11179000	ALAMEDA C NR NILES CA	632.7	0.88	39%	-2.25	1.20	Mediocre	1.62
	DRY C A UNION CITY CA	9.4	0.39	-57%	-0.08	1.26	Mediocre	0.50
	SAN LORENZO C AB DON CASTRO RES NR CASTRO V CA	18.0	0.55	-55%	0.09	1.20	Mediocre	2.33
	CROW C NR HAYWARD CA	10.5	0.81	-31%	0.61	3.35	Good	2.33
	CULL C AB CULL C RES NR CASTRO VALLEY CA	5.8	0.79	-44%	0.53	2.87	Moderate	2.00 1.16
		37.8	0.79	-35%	0.55			
			0.78	-35%	0.56	3.15	Good	1.49
	SAN LORENZO CA SAN LORENZO CA	46.9		25%		3.12	Good	1.92
		6.1	0.77		-0.31	2.25	Moderate	1.17
	NAPA RIVER NEAR ST. HELENA CALIF	82.0	0.89 0.69	8% 19%	0.75 -0.12	4.23	Excellent	1.29
		218.7				2.37	Moderate	0.87
		14.2	0.76	26%	0.35	2.94	Moderate	1.63
11458500	SONOMA C A AGUA CALIENTE CA	58.1	0.88	1%	0.78	4.46	Excellent	1.73
		17.9	0.69	81%	-2.32	0.82	Poor	0.87
11460000	CORTE MADERA C A ROSS CA	18.3	0.74	-36%	0.39	2.74	Moderate	0.71
11460400	LAGUNITAS C A SP TAYLOR STATE PK CA	34.3	0.76	-63%	0.01	1.32	Mediocre	0.19
11460600	LAGUNITAS C NR PT REYES STATION CA	81.7	0.66	-43%	0.27	2.28	Moderate	0.54
11460750	WALKER C NR MARSHALL CA	31.3	0.74	-36%	0.39	2.74	Moderate	0.95
	RUSSIAN R NR UKIAH CA	100.2	0.86	16%	0.58	3.69	Good	1.17
	EF RUSSIAN R NR CALPELLA CA	92.2	0.85	0%	0.71	4.34	Excellent	2.33
	RUSSIAN R NR HOPLAND CA	362.4	0.63	-46%	-0.20	1.66	Mediocre	2.67
	BIG SULPHUR C A G RESORT NR CLOVERDALE CA	13.1	0.73	-40%	0.46	2.79	Moderate	0.76
	RUSSIAN R NR HEALDSBURG CA	793.9	0.91	-7%	0.70	4.19	Excellent	3.00
11465660	COPELAND C A ROHNERT PARK CA	5.5	0.77	-23%	0.56	3.42	Good	0.94
	LAGUNA DE SANTA ROSA A STONY PT RD NR COTATI CA	41.4	0.74	104%	-1.33	0.26	Poor	1.02
	MATANZAS C A SANTA ROSA CA	21.6	0.77	54%	0.38	2.31	Moderate	1.38
	SANTA ROSA C A SANTA ROSA CA	55.9	0.90	12%	0.69	4.03	Excellent	1.98
11466320	SANTA ROSA C A WILLOWSIDE RD NR SANTA ROSA CA	77.0	0.87	17%	0.52	3.56	Good	1.74
	MARK WEST C NR MIRABEL HEIGHTS CA	251.8	0.75	30%	-1.99	2.12	Mediocre	0.93
11467000	RUSSIAN R NR GUERNEVILLE CA	1337.9	0.78	-5%	0.05	2.88	Moderate	1.83
11467200	AUSTIN C NR CAZADERO CA	62.8	0.74	-24%	0.28	2.82	Moderate	1.18
11467510	SF GUALALA R NR THE SEA RANCH CA	161.5	0.86	-13%	0.69	3.99	Good	1.73
	Count=	46	46	46	46	46		46
	Max =	1337.9	0.9	1.0	0.8	4.5		3.0
	Min =	5.5	0.1	-0.8	-7.9	0.3		0.0
	Average =	133.3	0.7	0.0	-0.3	2.5		1.4

Review of NWM Performance Statistics

Overall Assessment


Overall assessment of NWM performance is summarized by tabulating the frequency of Score17 values across all unregulated sites; Figure 4 illustrates this. To summarize, 78% of the unregulated sites were rated Moderate or better, 50% were rated Good or better, and 16% were rated Excellent. The regulated sites did not do as well but some still showed useful performance; of the 15 regulated sites 7 (47%) showed Moderate performance, 8 (53%) were Poor or Mediocre.


Basin Characteristics

Exploration of the potential relationships between NWM performance as Score17 and basin characteristics was conducted. Figure 5 illustrates results for Precipitation, Orography, Slope, Soils and Basin Storage (i.e. reservoirs). The lack of correspondence of NWM performance to these basin characteristics indicates that these NWM basin parameters do not systematically influence performance.

Of interest is how much the regulated basins influenced overall performance. Note that some stations were not included because of complete regulation (e.g. Dry Creek below Lake Sonoma in Sonoma County). An indication of reservoir storage is illustrated in Figure 6 which shows that stations having a high basin storage ratio also exhibit Mediocre or Poor performance per Score 17 (i.e. below 2.5). If these stations are removed from the summary tabulation (Figure 4) the NWM performance improves to 78% of the sites were rated Moderate or better, 44% were rated Good or better, and 16% were rated Excellent. There was no evident relationship shown when comparing Score17 against the HDI (Hydrologic Disturbance Index; not shown). Figure 7 illustrates and example of the influence of regulation of the flow time series.

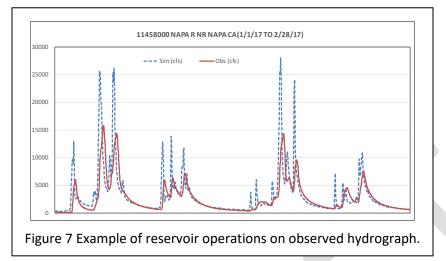
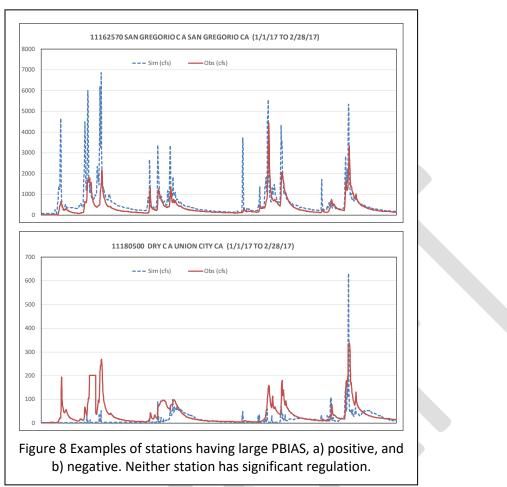
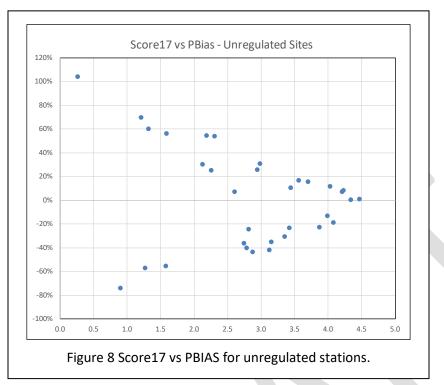



Figure 5 shows an example of the influence of reservoir operations on the observed hydrograph.

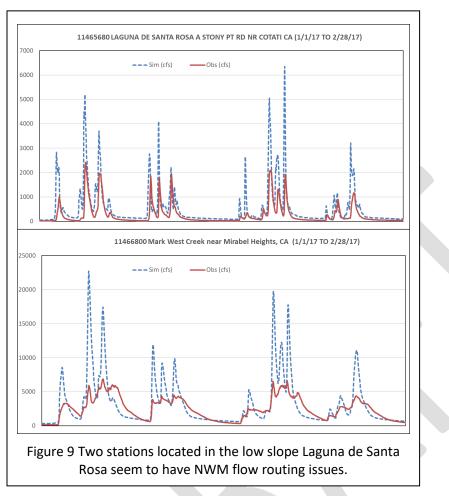
Runoff Volume

The correspondence of NWM simulated runoff volume is measured by the PBIAS metric. It turns out that PBIAS can be negative or positive depending on whether the NWM simulated volume exceeds or is less than the gaged volume. Figure 8 shows two examples of basins having little regulation that exhibit a) large positive PBIAS, and b) large negative PBIAS.



Many of the positive PBIAS are due to reservoir operations; if these stations are removed from the list, leaving 33 stations having no or low regulation, then there remain a number of stations that exhibit a range of positive or negative PBIAS (Figure 8, Table 3). For these stations having low Score17 values, performance is attributed to poor rainfall mapping, either too much rain or too little. Stations with high positive or negative PBIAS are located mainly in Alameda and San Mateo counties, which have relatively lower elevations.

STA_ID	STA_NAME	DA [mi^2]	COUNTY NAME	Score17 (1-5)	PBias
11465680	LAGUNA DE SANTA ROSA A STONY PT RD NR COTATI CA	41.4	Sonoma	0.26	1.04
11176900	ARROYO DE LA LAGUNA A VERONA CA	403.3	Alameda	1.20	0.70
11162570	SAN GREGORIO C A SAN GREGORIO CA	51.0	San Mateo	1.32	0.60
11176400	ARROYO VALLE BL LANG CN NR LIVERMORE CA	130.7	Alameda	1.59	0.56
11162500	PESCADERO C NR PESCADERO CA	45.9	San Mateo	2.18	0.54
11466170	MATANZAS C A SANTA ROSA CA	21.6	Sonoma	2.31	0.54
11169800	COYOTE C NR GILROY CA	109.2	Santa Clara	2.98	0.31
11466800	MARK WEST C NR MIRABEL HEIGHTS CA	251.8	Sonoma	2.12	0.30
11458433	SONOMA CREEK A KENWOOD CA	14.2	Sonoma	2.94	0.26
11182500	SAN RAMON C A SAN RAMON CA	6.1	Contra Costa	2.25	0.25
11466320	SANTA ROSA C A WILLOWSIDE RD NR SANTA ROSA CA	77.0	Sonoma	3.56	0.17
11461000	RUSSIAN R NR UKIAH CA	100.2	Mendocino	3.69	0.16
11466200	SANTA ROSA C A SANTA ROSA CA	55.9	Sonoma	4.03	0.12
11164500	SAN FRANCISQUITO C A STANFORD UNIVERSITY CA	37.7	Santa Clara	3.44	0.11
11456000	NAPA RIVER NEAR ST. HELENA CALIF	82.0	Napa	4.23	0.08
11174600	ALAMO CN NR PLEASANTON CA	39.5	Alameda	4.21	0.07
11169500	SARATOGA C A SARATOGA CA	8.8	Santa Clara	2.60	0.07
11458500	SONOMA C A AGUA CALIENTE CA	58.1	Sonoma	4.46	0.01
11461500	EF RUSSIAN R NR CALPELLA CA	92.2	Mendocino	4.34	0.00
11467510	SF GUALALA R NR THE SEA RANCH CA	161.5	Sonoma	3.99	-0.13
11173200	ARROYO HONDO NR SAN JOSE CA	76.9	Santa Clara	4.07	-0.19
11172945	ALAMEDA C AB DIV DAM NR SUNOL CA	33.6	Alameda	3.87	-0.23
11465660	COPELAND C A ROHNERT PARK CA	5.5	Sonoma	3.42	-0.23
11467200	AUSTIN C NR CAZADERO CA	62.8	Sonoma	2.82	-0.24
11180900	CROW C NR HAYWARD CA	10.5	Alameda	3.35	-0.31
11181000	SAN LORENZO C A HAYWARD CA	37.8	Alameda	3.15	-0.35
11460000	CORTE MADERA C A ROSS CA	18.3	Marin	2.74	-0.36
11463170	BIG SULPHUR C A G RESORT NR CLOVERDALE CA	13.1	Sonoma	2.79	-0.40
11181040	SAN LORENZO C A SAN LORENZO CA	46.9	Alameda	3.12	-0.42
11180960	CULL C AB CULL C RES NR CASTRO VALLEY CA	5.8	Alameda	2.87	-0.44
11180825	SAN LORENZO C AB DON CASTRO RES NR CASTRO V CA	18.0	Alameda	1.57	-0.55
11180500	DRYCAUNION CITYCA	9.4	Alameda	1.26	-0.57
11162630	PILARCITOS C A HALF MOON BAY CA	26.9	San Mateo	0.90	-0.74

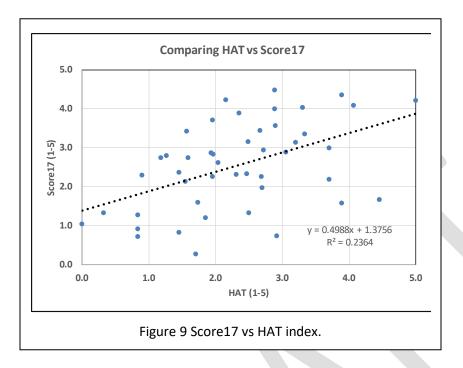


NWM Parameters – Wetland Routing

The lack of correspondence of NWM performance to a number of basin characteristics (Figure 3) indicates that the NWM basin parameters do not systematically influence performance. However, there are two stations in Sonoma county that seem to have issues with performance, even though they have little regulation by upstream reservoirs. The two stations gage flows in the Laguna de Santa Rosa which has the lowest basin slopes in the AQPI region; the high positive PBIAS is evident in the hydrographs (Figure 9). The Laguna de Santa Rosa is an ancestral lakebed and currently a large wetland. It seems that NWM flow routing in this area is poor, and that inflows and local runoff in the wetland tend to be delayed and attenuated. It is noteworthy that the Mark West station has the highest HDI rating by the Gages-II database. Additional investigation of the NWM flow routing seems warranted for this area, and perhaps also for the low slope reaches along the SF Bay coast.



HAT Assessment Overview


The HAT procedure was applied for USGS stream gage sites in Sonoma County. Figure 1 summarizes the results. The map shows the HAT ratings as color codes for each USGS age site. There seems no evident spatial pattern to the HAT performance ratings. The inserted graphic summarizes performance statistics. Cumulatively across all sites and flood events it can be said that 90% of the NWM simulations were Satisfactory or better, 20% were Very Good, and 10% were Unsatisfactory.

Comparison of Score17 to HAT

The use of composite indices or metrics to assess NWM simulation accuracy involves collapsing several metrics into a single number. For this project, there were two composite indices used, the Score17 and the HAT indices. The Score17 index involved weighting the CC, PBIAS and NSE statistics for the 2-month period January-February 2017 as detailed above. The HAT index was generated using an automated machine learning approach applied to the entire 5-year period as described in Appendix B. Comparison of the two indices is illustrated in Figure 9. As indicated, there is weak correspondence between the two indices. In discussion with the HAT developers it was learned that that index varies from year to year (e.g dry to wet) and season to season. This suggests that basic hydrological processes vary depending on season and moisture conditions (e.g. soil moisture). The 2-month period January – February 2017 was a notably wet period with significant rain during the preceding December. Additional research is on-going to examine this topic.

Discussion

The NWM baseline verification presented here has identified several issues, including a) precipitation mapping, b) reservoir operations, and c) NWM channel routing.

a) Precipitation Mapping

Precipitation intensity, duration and location are primary drivers for flood runoff. This NWM baseline verification has identified a number of basins where precipitation mapping is apparently suspect as the streamflow volumes differ greatly from observations. Improvements in precipitation mapping therefore hold promise for improvements in flood runoff prediction which is a primary goal of the AQPI project.

Tracking precipitation occurrence as it develops using radar and surface observations is called Quantitative Precipitation Estimation (QPE). QPE products are important for flash flood alerting and provide the basis for short-term nowcasting out to 6 hours. The main NWS QPE product is the Multi-Radar Multi-Sensor (MRMS, <u>https://mrms.nssl.noaa.gov/</u>) project which utilizes an automated system that rapidly and intelligently integrates data from multiple radars and radar networks, surface observations, numerical weather prediction (NWP) models, and climatology to generate seamless, high spatio-temporal resolution mosaics. AQPI project local x-band radars are intended to improve QPE mapping and are to be incorporated into the NWM MRMS products. Chen et al (2018) described improvements of QPE for the SF Bay area associated with operation of an x-band radar located in Santa Clara County.

Forecasting of precipitation out to longer lead times is called Quantitative Precipitation Forecasting (QPF) which involves numerical predictions modeling (NWP) of the atmosphere. The main NWP model for AQPI is the so-called High Resolution Rapid Refresh (HRRR, <u>https://rapidrefresh.noaa.gov/hrrr/</u>)

model. The HRRR is a NOAA real-time 3-km resolution, hourly updated, cloud-resolving, convectionallowing atmospheric model, initialized by 3km grids with 3km radar assimilation. Radar data is assimilated in the HRRR every 15 min over a 1-h period adding further detail to that provided by the hourly data assimilation from the 13km radar-enhanced Rapid Refresh. Recent development of an ensemble version of the HRRR, called HRRRE, seeks to improve 0-12 hr high-resolution forecasts through ensemble-based, multi-scale data assimilation; there continues testing of ensemble-design concepts for 0-36 hr forecasts. English et al (2018) described HRRR development for the SF Bay area.

b) Reservoir operations

Reservoir capture of flood flows and other water management actions have been identified as a significant factor in the accuracy of the NWM. The NWM does not represent reservoir operations, except for some reservoirs it performs a level pool routing procedure. The NWM does not represent diversions of other water management actions. As shown herein, a large amount of reservoir storage in a basin will greatly influence model performance. Lesser amounts of storage have corresponding lesser effects so that there is useful value in the NWM forecasts downstream from reservoir in these basins. Given the generally good to excellent performance of the NWM for unregulated basins, then the NWM forecasts of tributary inflows into reservoirs should have value to reservoir operators. To represent reservoir operations requires supplementary modeling of the reservoir. Kim et al (2019) demonstrated linkage of NWM generated flows with the ResSim model of Lake Mendota in the upper Russian River basin. A case study involving interfacing of NWM forecasts with the Santa Clara County Coyote and Guadalupe Rivers operations model is on-going.

Review and Feedback:

Given this NWM baseline assessment and the (forthcoming) companion forecast assessment, it is intended that flood and other water management agencies review these to confirm that the data presented is correct and that the performance characterization is appropriate. This could provide a foundation for "believability" by users.

Previous activities directed to review of the distributed hydrologic modeling approach were conducted to guide design of the AQPI tributary hydrologic modeling (Johnson et al 2016, Herdman et al 2018). Simulation of the watersheds allowed portrayal of forecast flood hydrographs, peak flows and their frequency equivalent (e.g. 1 % or 100-year recurrence level), soil moisture levels, and built facilities at risk (e.g. bridge crossings) for any location. All of these products were rated Very Useful by survey respondents. However, some asked about river stage and inundation mapping; inundation mapping for tributaries is not expected for initial rollout of the AQPI system. Inundation mapping is the emphasis for the coastal hydrodynamic model of the SF Bay and the tributary estuaries.

What's Next

Forecast Assessment: A follow on assessment will be conducted to determine how well the NWM does in forecast mode. Note the retrospective assessment was a comparative exercise and did not involve forecasts.

Real-Time Operations: The AQPI prototype will be deployed for real-time operations for the upcoming winter storm season 2019-2020. This will provide opportunity for users to access the hydrologic forecasts and consider how to incorporate these into their flood mitigation and water management operations. Some jurisdictions are requesting watershed-specific precipitation accumulation products to fit with their current flash flood alerting tools; this is being done.

Collaboration for AQPI Hydrologic Assessment

This report is intended to support reflective assessment with prospective users of the NWM products to determine its usability and believability. Involved staff are associated with the various county-level flood and water management agencies; detailed listing of these staff is listed in Appendix B. Reflective assessment involves polling users' opinions about the various NWM performance.

References

Chen, H., R Cifelli, V. Chandrasekar, H. Chen, L. Johnson. 2018. High Resolution Radar Quantitative Precipitation Estimation in the San Francisco Bay Area: Rainfall Monitoring for the Urban Environment.. Journal of the Meteorological Society of Japan.

Falcone, James. 2011. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow. U.S. Geological Survey Water Resources NSDI Node, On-line report and database download. Accessed 15 August 2019, <u>https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml#Top</u>

Herdman, L. J. Kim, , L.E. Johnson, T. Coleman, R. Cifelli, R. Martyr-Koller, J. Finzi-Hart, L. Erikson and P. Barnard. (2018) San Francisco Bay Integrated Flood Forecasting Project - Summary Report. NOAA Technical Memorandum PSD-317, NOAA Printing Office, Silver Spring, MD, 37 pp. Available at: https://repository.library.noaa.gov/view/noaa/17849

Johnson, L.E., C. Hsu, R. Zamora, and R. Cifelli. (2016) Assessment and Applications of Distributed Hydrologic Model - Russian-Napa River Basins, CA. NOAA Technical Memorandum PSD-316, NOAA Printing Office, Silver Spring, MD, 101 pp. doi:10.7289/V5M32SS9 https://repository.library.noaa.gov/view/noaa/9419

Kim, J., Han, H., Johnson L., Lim, S., and Cifelli, R. (2019) Hybrid Machine Learning Framework for Hydrological Assessment. Journal of Hydrology, 577: <u>https://doi.org/10.1016/j.jhydrol.2019.123913</u>.

Kim, J., L. Read, L. E. Johnson, D. Gochis, R. Cifelli, H. Han. (2019) An Experiment on Reservoir Representation Schemes to Improve Hydrologic Prediction in a Regulated River System. Submitted to Hydrological Sciences Journal.

NOAA Office for Water Prediction (OWP) (2015) Flash flood services for the future: Flash Flood Summit and Focus Group findings. Retrieved April 24, 2017, from http://www.nws.noaa.gov/os/water/resources/NOAA_Flash_Flood_Summit_Report5_29_15.pdf. AGU & AMS papers and posters.

APPENDIX A: USGS GAGES-II BASIN CHARACTERISTICS

BASIN ID:

- BasinID STAID Gage ID
- BasinID STANAME Station Name
- BasinID DRAIN_SQKM Watershed drainage area, sq km, as delineated in our basin boundary
- BasinID HUC02 NHDPlus Water Resources Region (HUC2; 01 = New England, 02 = Mid-Atlantic, etc.) in which the basin is contained.
- BasinID LAT_GAGE Latitude at gage, decimal degrees
- BasinID LNG_GAGE Longitude at gage, decimal degrees
- BasinID STATE State at gage location
- BasinID COUNTYNAME_SITE Name of the county at gage location

BASIN_CLASSIFICATION:

 Bas_Classif HYDRO_DISTURB_INDX Hydrologic "disturbance index" score, based on 7 variables: 1) MAJ_DDENS_2009, 2) WATER_WITHDR, 3) change in dam storage 1950-2009, 4) CANALS_PCT, 5) RAW_DIS_NEAREST_MAJ_NPDES, 6) ROADS_KM_SQ_KM, and 7) FRAGUN_BASIN. Low values = low anthropogenic hydrologic modification in the watershed, high values = high anthropogenic hydologic modification

HYDROMOD_DAMS:

- HydroMod_Dams NDAMS_2009 Number of dams in watershed, from our enhanced version of the 2009 National Inventory of Dams (NID), created in December 2010. See note.
- HydroMod_Dams STOR_NID_2009 Dam storage in watershed ("NID_STORAGE"); megaliters total storage per sq km (1 megaliters = 1,000,000 liters = 1,000 cubic meters). Also see note to the right.
- HydroMod_Dams MAJ_NDAMS_2009 Number of "major" dams in watershed. Major dams defined as being >= 50 feet in height (15m) or having storage >= 5,000 acre feet (National Atlas definition)

CLIMATE:

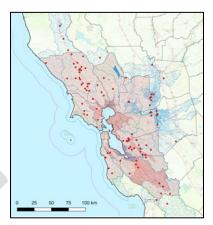
• Climate PPTAVG_BASIN Mean annual precip (cm) for the watershed, from 800m PRISM data. 30 years period of record 1971-2000.

SOILS:

- Soils HGA Percentage of soils in hydrologic group A. Hydrologic group A soils have high infiltration rates. Soils are deep and well drained and, typically, have high sand and gravel content.
- Soils HGB Percentage of soils in hydrologic group B. Hydrologic group B soils have moderate infiltration rates. Soils are moderately deep, moderately well drained, and moderately coarse in texture.
- Soils HGC Percentage of soils in hydrologic group C. Hydrologic group C soils have slow soil inflitration rates. The soil profiles include layers impeding downward movement of water and, typically, have moderately fine or fine texture.
- Soils HGD Percentage of soils in hydrologic group D. Hydrologic group D soils have very slow infiltration rates. Soils are clayey, have a high water table, or have a shallow impervious layer.

TOPO:

 Topo ELEV_MEAN_M_BASIN Mean watershed elevation (meters) from 100m National Elevation Dataset


- Topo ELEV_SITE_M Elevation at gage location (meters) from 100m National Elevation Dataset
- Topo SLOPE_PCT Mean watershed slope, percent. Derived from 100m resolution National Elevation Dataset, so slope values may differ from those calculated from data of other resolutions.

APPENDIX B - SUMMARY OF HAT PERFORMANCE RANKNG **PROCEDURE**

Background

Hydrologic models can be used for both planning and operational purposes. In order to establish confidence in a hydrologic model, it is important to know how the model performs in the regions of concern to the user. The hydrologic model being used for the AQPI project is the National Water Model (NWM, https://water.noaa.gov/). There are many ways to evaluate a hydrologic model, depending on the user needs (e.g., peak flow, time to peak). A variety of performance metrics can be generated to quantify overall skill. The metrics are designed to assess a particular aspects of model performance and interpretation of the results can be confusing for people who are not experts

in hydrologic analysis. To facilitate interpretation of results and minimize confusion, NOAA has developed the Hydrologic Assessment Tool (HAT) to help evaluate NWM performance. The HAT uses a combination of machine learning and clustering analysis to provide an assessment of NWM performance divided into 4 categories: unsatisfactory (US), satisfactory (S), good (G), and very good (VG).

Objectives

- Develop a hydrological assessment tool (HAT) to rate performance of the NWM with understandable terms.
- Assess the NWM retrospective simulations for flood events using the HAT and summarize the results.

Motivation of AQPI-HAT for Flood Mitigation and Water Management Programs in the SF Bay

Area

San Francisco Bay is a highly urbanized estuary and the surrounding communities are susceptible to flooding in inland rivers and creeks that drain to the Bay, and along the Bay shoreline. The AQPI integrated forecast system is intended to forecast flooding in the SF Bay tributaries and estuaries. Flood mitigation and water management agencies require stream flow forecasts to support decisions on emergency resource deployments and infrastructure management.

AQPI HAT Application

To provide forecasters, water managers, and other stakeholders with information on the NWM assessment in understandable terms, the NOAA AQPI Team has developed the HAT and its application in the SF Bay area. This case study focuses on the NWM retrospective simulation which is based on observed precipitation data for the period October 2013 to January 2017. The HAT employs a hybrid machine learning framework based on a combination of clustering and classification techniques and a composite of error metrics. Details are provided in the reference cited below. To train the HAT procedure, NWM simulated flows are compared to observed flows at selected USGS gage sites for tributaries in the SF Bay area. The performance of the HAT is then validated against NWM simulated streamflow data for storm events during February 2017.

Assessment of AQPI NWM Performance

The NWM is a distributed hydrologic model which computes the hydrologic balance on a 250 m grid, aggregates excess precipitation to a 1 km grid, and routes these flood flows using the NHD-PlusV2 stream network. The system updates to include USGS gaged flows (-3 to 0 hrs), along with three forecast configurations (short- (0 to 18 hrs; 1-hr update), medium- (0 to 10 days; 6-hr update) and long-range (0 to 30 days; 1-day update). The NWM can provide a variety of flood forecast products, including hydrographs at any location (peak flow, time-to-peak, duration of high flow), and grid displays of streamflow and soil moisture.

Application of the HAT procedure involves two main themes for a) refinement of the HAT framework and b) assessment of the NWM retrospective simulations in 2017. Results of the NWM performance assessment will be presented for selected tributaries in each of the SF Bay counties. These results will be provided to flood and water management agency staff in each county so they can judge the NWM performance assessment and consider how the model can be used to support their flood mitigation operations.

57 USGS gages were selected in this study, excluding those that observed low-quality streamflow data associated with reservoir operations and diversions. The watershed for these 57 gages varies from 11.5 to 3,425.3 km2.

This study used the NWM v.1.2 to conduct a retrospective streamflow simulation and train the HAT from October 2013 to January 2017 (total 1440 storm events were identified at the 57 USGS gages). The performance of HAT and NWM for the SF Bay area is assessed against the USGS streamflow data and an independent NWM retrospective simulation for February 2017 (total 280 storm events were identified at the 57 USGS gages).

To illustrate the HAT procedure the following figures show the various types of NWM simulation performance in comparison to USGS gage readings. Figure 1 shows a typical hydrograph with the segments highlighted for the a) rising limb, b) falling limb (or recession) and c) total hydrograph.

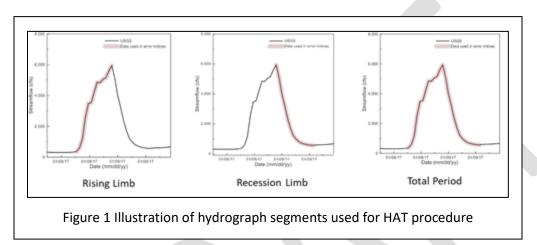


Figure 2 illustrates the HAT ratings for various hydrographs. The figure represents total hydrograph and it has four rows representing each rating. Red and blue lines are the simulated and observed hydrographs respectively.

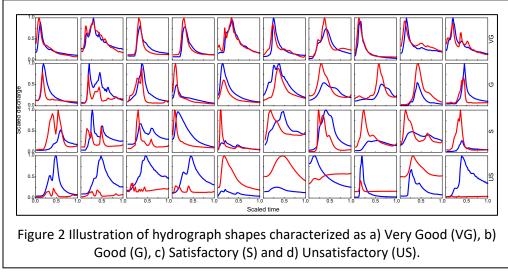


Figure 3 shows two examples of NWM performance per the HAT procedure for February 2017.

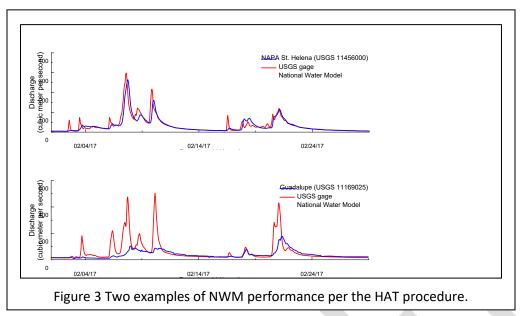
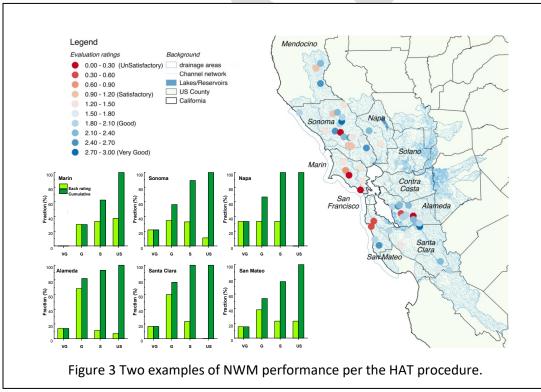



Figure 4 illustrates the HAT ratings for USGS gages in the AQPI region. The inserted graphs for the 6 counties show the frequency of assignment t the four categories, VG, G, S, NS.

Detailed reporting on the NWM performance for each USGS gage are linked to this report, summarized by county.

APPENDIX C – APQI HYDROLOGY COLLABORATORS

NOAA ESRL-PSD

0

0

- Rob Cifelli rob.cifelli@noaa.gov
 - Greg Pratt greg.pratt@noaa.gov
 - jungho.kim@noaa.gov Jungho Kim
- Lynn Johnson Lynn.e.johnson@noaa.gov
- Haonan Chen 0
- Melnda Maguis
- Alameda County -

0

0

- Public Works Agency (https://www.acpwa.org/) 0
 - rohin@acpwa.org Rohin Saleh
 - James Yoo jamesy@acpwa.org
- Water District (https://www.acwd.org/) 0
- Evan Buckland evan.buckland@acwd.com, (510)668-6539
- o Thomas Niesar thomas.niesar@acwd.com
- Zone 7 Water District (http://www.zone7water.com/) 0
- jtang@zone7water.com Jeff Tang 0
- Alameda County Flood Control and Water Conservation District) 0
- CalTrans

0

0

- Dillon.Miner@dot.ca.gov Dillon Miner
- Chris Dormey Chris.Dorney@wsp.com
- Contra Costa County
 - Contra Costa County Public Works: Flood Control & Water Conservation District
 - (http://www.co.contra-costa.ca.us/5743/Flood-Control-District)
 - Mark Boucher mark.boucher@pw.cccounty.us
- East Bay Municipal Utility District https://www.ebmud.com/
 - Dave Briggs david.briggs@ebmud.com
 - Mike Togliani michael.tognolini@ebmud.com
 - Eileen White eileen.white@ebmud.com
 - Mike Connor -mconnor@ebda.org
- East Bay Regional Park District http://www.ebparks.org/
 - o Brian Holt bholt@ebparks.org
 - Hal Maclean hmaclean@ebparks.org
 - Kahri Helea khelae@ebparks.org
 - Matt Graul mgraul@ebparks.org 0
 - nlavalle@ebparks.org
 - Neoma Lavalle
- East Bay Discharges Authority (EBDA)
 - Jackie Zipkin jzipkin@ebda.org
 - Jason Warner jwarner@oroloma.org
- Marin County Public Works
 - Marin Watershed Program (http://www.marinwatersheds.org/)
 - Roger Leventhal RLeventhal@marincounty.org 0
 - twilliams@marincounty.org • Tony Williams
- Marin Municipal Water District

- Paul Morrison pmorrison@marinwater.org
- 0 Napa County

0

- 0 Flood & Water Resources https://www.countyofnapa.org/1074/Flood-Water-Resources
 - Richard.Thomasser@countyofnapa.org **Rick Thomasser**
- jeremy.sarrow@countyofnapa.org Jeremy Sarrow 0
- City of Napa

0

- ekebbas@cityofnapa.org • Erin Kebbas
 - wash@cityofnapa.org
- pcostello@cityofnapa.org • Pat Costello
- San Mateo County
 - Brian Mulver

• Alexis DuFour

Bill Ash

- bmolver@smcgov.org
- Maggie Osbahn Wheeler <u>mosbahr@smcgov.org</u> SM Engineer (Floodplains) • Erika Powell epowell@smcgov.org Flood Resilience program manager
- Mark Chow
 - mchow@smcgov.org Engineer (Watershed)
- San Francisco
- adufour@sfwater.org
- Rebecca Pluche rpluche@sfwater.org
- Santa Cruz County
 - o Santa Cruz County Department of Public Works http://www.dpw.co.santa-cruz.ca.us/
 - Mark Strudley mark.strudley@santacruzcounty.us 0
- Santa Clara County

0

0

- Santa Clara Valley Water District https://www.valleywater.org/ 0
- jxu@valleywater.org o Jack Xu
- Liang Xu lxu@valleywater.org 0
 - Nahm Lee nlee@valleywater.org
 - sshaikh@valleywater.org Samina Shaikh
- Susana Rodriguez srodriguez@valleywater.org
- Vince Gin Aaron Baker
- vgin@valleywater.org abaker@valleywater.org
- Afshan Rouhani arouhani@valleywater.org ezedler@valleywater.org
- Emily Zedler
- Solano County
 - Public Works http://www.solanocounty.com/depts/rm/public_works/default.asp 0
 - Gustavo Cruz gcruz@scwa2.com
 - cuetara@scwa2.com o Jay Cuetara
- Sonoma County
 - Jake Spaulding
- jake.spaulding@scwa.ca.gov
- Chris Delaney Chris.Delaney@scwa.ca.gov 0
- John Mendoza john.mendoza@scwa.ca.gov
- Donald Seymour donald.seymour@scwa.ca.gov 0
- Nathan Baskett nathan.baskett@scwa.ca.gov 0
- Andrew Rich andrew.rich@scwa.ca.gov 0
- Carlos Diaz carlos.diaz@scwa.ca.gov, diazcarlos@gmail.com 0
- Tim Romero Tim.Romero@sonoma-county.org 0
- Todd Schram ?
- Flood Forecast and Emergency Information 0

- http://www.scwa.ca.gov/flood-forecast-and-emergency-information/ 0
- National Weather Service
 - alan.haynes@noaa.gov 0 Alan Haynes
 - Scott Rowe scott.rowe@noaa.gov 0
 - Brian Garcia brian.garcia@noaa.gov 0
 - reginald.kennedy@noaa.gov **Reginald Kennedy** 0
 - jesus.haro@noaa.gov Jesus Haro 0
 - warren.blier@noaa.gov Warren Blier
 - 0 brooke.bingaman@noaa.gov Brooke Bingaman 0
 - Courtney Obergfell courtney.obergfell@noaa.gov
 - jlargier@ucdavis.edu o John Largier
 - Kathy.schaefer@comcast.net
 - Kathy.schaefer
- California Dept. Water Resources
 - Anderson, Michael L Michael.L.Anderson@water.ca.gov 0
 - ramesh.gautam@water.ca.gov Ramesh Gautam
 - M. Russo 0

0

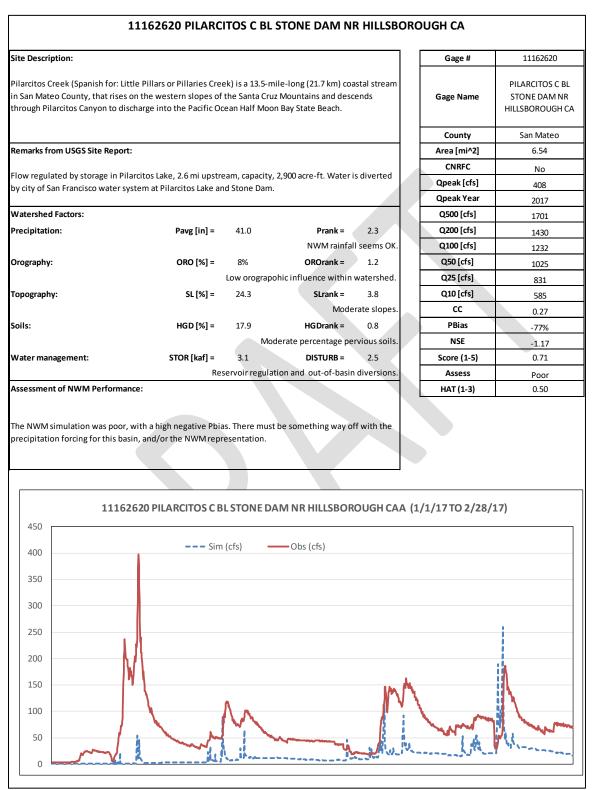
0

- Boone Lek boone.lek@water.ca.gov
- Binta Coleman 0
- Binta.Coleman@water.ca.gov

mrusso@water.ca.gov

- Erika Powell 0
- erika.powell@ch2m.com

APPENDIX C – NWM GAGE STATION ASSESSMENT REPORTS



te Description:				Gage #	11162500
escadero Creek is a major strea (2.8 km), it is the longest strear lountains. Its source is at 1,880 reserve at Pescadero State Bea loon Bay.	n in San Mateo County a feet (570 m) above sea le	nd flows all y evel. It enter	rear from springs in the Santa Cruz rs Pescadero Marsh Natural	Gage Name	PESCADERO C NR PESCADERO CA
				County	San Mateo
marks from USGS Site Report:				Area [mi^2]	45.9
				CNRFC	No
nall diversions upstream from	station by pumping.			Qpeak [cfs]	10600
				Qpeak Year	1998
atershed Factors:				Q500 [cfs]	24892
ecipitation:	Pavg [in] =	36.4	Prank = 1.8	Q200 [cfs]	21525
			NWM rainfall seems OK.	Q100 [cfs]	19027
ography:	ORO [%] =	20%	OROrank = 2.3	Q50 [cfs]	16381
	Moderate co	astal orograp	pohic influence within watershed.	Q25 [cfs]	13799
pography:	SL [%] =	26.7	SLrank = 4.3	Q10 [cfs]	10376
			Steep slopes speed runoff.	cc	0.87
ils:	HGD [%] =	22.0	HGDrank = 1.0	PBias	54%
		Mo	oderate percentage pervious soils.	NSE	0.30
ater management:	STOR [kaf] =	0.0		Score (1-5)	2.18
		0.0	DISTURB = 2.1	30016 (1-3)	-
	ce:	o regulation,	except for some small diversions.	Assess HAT (1-3)	Moderate 2.22
e NWM simulation captures fl	ce: ood peaks relatively wel	o regulation,	except for some small diversions.	Assess	Moderate
e NWM simulation captures fl	ce: ood peaks relatively wel	o regulation,	except for some small diversions.	Assess	Moderate
e NWM simulation captures fl	ce: ood peaks relatively wel ted total volume).	o regulation,	except for some small diversions.	Assess HAT (1-3)	Moderate
e NWM simulation captures fl	ce: ood peaks relatively wel ted total volume).	o regulation,	except for some small diversions.	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam	ce: ood peaks relatively wel ted total volume).	o regulation, I, but over-e	except for some small diversions.	Assess HAT (1-3)	Moderate
latively high bias (over-estiam	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl atively high bias (over-estiam	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl atively high bias (over-estiam 6000 5000	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl atively high bias (over-estiam 6000 5000	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam 6000 5000 4000	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam 6000 5000 4000 3000	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam 6000 5000 4000	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate
e NWM simulation captures fl latively high bias (over-estiam	ce: ood peaks relatively wel ted total volume). 11162500 PES	o regulation, I, but over-e	except for some small diversions. stimates most peak flows and has	Assess HAT (1-3)	Moderate

ite Description:				Gage #	11162570
ows 12 miles (19 km) through r	olling grasslands and par outaries originate on the	sturelands u western ric	e and La Honda Creeks, whence it until it meets the Pacific Ocean at dges of the Santa Cruz Mountains	Gage Name	SAN GREGORIO C A SAN GREGORIO CA
				County	San Mateo
emarks from USGS Site Report	:			Area [mi^2]	51
				CNRFC	No
o regulation or known diversio	on upstream from statior	1. Low flow a	affected by domestic use.	Qpeak [cfs]	7910
				Qpeak Year	1982
atershed Factors:				Q500 [cfs]	12345
ecipitation:	Pavg [in] =	35.0	Prank = 1.6	Q200 [cfs]	10544
		NWM over	prediction indicates less actual rain.	Q100 [cfs]	9216
rography:	ORO [%] =	28%	OROrank = 3.0	Q50 [cfs]	7817
	Mod	erate orogra	apohic influence within watershed.	Q25 [cfs]	6473
opography:	SL [%] =	22.3	SLrank = 3.4	Q10 [cfs]	4727
			Moderate slopes.	cc	0.66
pils:	HGD [%] =	10.0	HGDrank = 0.2	PBias	60%
				NSE	-1.05
			Large percentage pervious soils.	NJL	1.05
ater management:	STOR [kaf] =	0.0	DISTURB = 0.8	Score (1-5)	1.32
ssessment of NWM Performar	nce: cts flod peaks and runoff			-	
ssessment of NWM Performar	nce: cts flod peaks and runoff		DISTURB = 0.8 No regulation and lttle disturbance.	Score (1-5) Assess	1.32 Mediocre
ssessment of NWM Performar	nce: cts flod peaks and runoff		DISTURB = 0.8 No regulation and lttle disturbance.	Score (1-5) Assess	1.32 Mediocre
ssessment of NWM Performar ne NWM simulation overpredi nuch) and/or soil infiltration (to	nce: cts flod peaks and runoff po little).	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance.	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performar ne NWM simulation overpredi nuch) and/or soil infiltration (to	nce: cts flod peaks and runoff po little).	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance.	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performar he NWM simulation overpredinuch) and/or soil infiltration (to	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performance he NWM simulation overpredinuch) and/or soil infiltration (to 8000	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performance he NWM simulation overpredinuch) and/or soil infiltration (to 8000	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
1 8000 7000 6000 5000 4000	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performance ne NWM simulation overpredi- nuch) and/or soil infiltration (to 8000 7000 6000 5000 4000	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre
ssessment of NWM Performance he NWM simulation overpredinuch) and/or soil infiltration (to buch) and/or soil infiltration	nce: cts flod peaks and runoff po little). 1162570 SAN GREG	volume, pe	DISTURB = 0.8 No regulation and lttle disturbance. erhaps due to poor rainfall (too	Score (1-5) Assess HAT (1-3)	1.32 Mediocre

Site Description:					Gage #	11162630
Pilarcitos Creek (Spanish for: Lit n San Mateo County, that rises o hrough Pilarcitos Canyon to dis	on the western slopes o	f the Santa		ream	Gage Name	PILARCITOS C A HALI MOON BAY CA
					County	San Mateo
emarks from USGS Site Report	:				Area [mi^2]	26.9
					CNRFC	No
low slightly regulated by storage	ge in Pilarcitos Lake 10 m	ni upstrean	1		Qpeak [cfs]	4750
					Qpeak Year	1982
atershed Factors:					Q500 [cfs]	6943
recipitation:	Pavg [in] =	45.1	Prank = 2.8		Q200 [cfs]	5908
			NWM rainfall seem	s OK.	Q100 [cfs]	5146
rography:	ORO [%] =	7%	OROrank = 1.1		Q50 [cfs]	4344
		Low orog	rapohic influence within waters	hed.	Q25 [cfs]	3579
opography:	SL [%] =	20.9	SLrank = 3.1		Q10 [cfs]	2592
			Moderate slo	opes.	cc	0.52
pils:	HGD [%] =	32.4	HGDrank = 1.7		PBias	-74%
			Moderate percentage pervious	soils.	NSE	-0.61
/ater management:	STOR [kaf] =	0.2	DISTURB = 2.3		Score (1-5)	0.90
/ater management:	STOR [kaf] =			-	Score (1-5) Assess	0.90
Assessment of NWM Performan	ice: with a high negative Pbi	No r as. There r	DISTURB = 2.3 agulation, except for some irrigation, except for some irrigation, except for some irrigation of the something way off with	ation.		
essessment of NWM Performan	ice: with a high negative Pbi	No r as. There r	DISTURB = 2.3 agulation, except for some irrigation, except for some irrigation, except for some irrigation of the something way off with	ation.	Assess	1
Assessment of NWM Performan	ice: with a high negative Pbi	No r as. There r	DISTURB = 2.3 agulation, except for some irrigation, except for some irrigation, except for some irrigation of the something way off with	ation.	Assess	1
essessment of NWM Performan	ice: with a high negative Pbi in, and/or the NWM mo	No r as. There r del repres	DISTURB = 2.3 agulation, except for some irrigation, except for some irrigation, except for some irrigation of the something way off with	the	Assess HAT (1-3)	1
essessment of NWM Performan	ice: with a high negative Pbi in, and/or the NWM mo	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrige	the	Assess HAT (1-3)	1
ssessment of NWM Performance in the NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrige	the	Assess HAT (1-3)	1
ssessment of NWM Performan he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance in the NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
ssessment of NWM Performance he NWM simulation was poor, recipitation forcing for this bas	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
Assessment of NWM Performance he NWM simulation was poor, recipitation forcing for this base 1400 1200 1000 800	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
1400 1200 1000 800 600	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
Assessment of NWM Performan the NWM simulation was poor, precipitation forcing for this bas 1400 1200 1000 800 600 400	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1
Assessment of NWM Performan the NWM simulation was poor, precipitation forcing for this bas 1400 1200 1000 800 600	ice: with a high negative Pbi in, and/or the NWM mo 11162630 PIL	No r as. There r del repres	DISTURB = 2.3 egulation, except for some irrigen nust be something way off with entation. C A HALF MOON BAY CA	the	Assess HAT (1-3)	1

	11164500 SAN FR	ANCISQ	UTO CA STANFC		NJIII CA	
te Description:					Gage #	11164500
an Francisquito Creek is a cree burses through the towns of Po to, and East Palo Alto. The cre an Mateo and Santa Clara cour	ortola Valley and Woodsic ek and its Los Trancos Cre	de, as well a	s the cities of Menlo Parl	k, Palo	Gage Name	SAN FRANCISQUITO A STANFORD UNIVERSITY CA
					County	San Mateo
emarks from USGS Site Report	:				Area [mi^2]	37.4
ou clichtly requisted by Coor	ville Leke constitut OF2 of	are ft Diver	rians unstraam from stat	tion to Los	CNRFC	SFCC1
ow slightly regulated by Sears ancos and Lagunita Canals for					Qpeak [cfs]	7200
		,			Qpeak Year	1998
atershed Factors:					Q500 [cfs]	9334
recipitation:	Pavg [in] =	33.3	Prank =	1.4	Q200 [cfs]	7958
			Low rainfall relative	to region.	Q100 [cfs]	6944
rography:	ORO [%] =	68%	OROrank =	6.6	Q50 [cfs]	5878
			High orographic	influence.	Q25 [cfs]	4856
pography:	SL [%] =	26.8	SLrank =	2.2	Q10 [cfs]	3532
			Very ste	ep slopes.	СС	0.67
ils:	HGD [%] =	26.8	HGDrank =	1.3	PBias	11%
			Low percentage imperv	ious soils.	NSE	0.44
ater management:	STOR [kaf] =	1.9	DISTURB =	3.5	Score (1-5)	3.44
-	STOR [kaf] = ow level of reservoir regu				Score (1-5) Assess	3.44 Good
L sessment of NWM Performation re NWM simulation tracked of	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urba	anization).		
L ssessment of NWM Performation tracked of	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urba	anization).	Assess	Good
ssessment of NWM Performa ne NWM simulation tracked ol pture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urba	anization). d (storage	Assess HAT (1-3)	Good 1.60
L ssessment of NWM Performation the NWM simulation tracked of upture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urb: Iller peaks over-estimate	anization). d (storage	Assess HAT (1-3)	Good 1.60
L ssessment of NWM Performance ne NWM simulation tracked of pture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urba	anization). d (storage	Assess HAT (1-3)	Good 1.60
L ssessment of NWM Performance NWM simulation tracked of pture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urb: Iller peaks over-estimate	anization). d (storage	Assess HAT (1-3)	Good 1.60
L ssessment of NWM Performance NWM simulation tracked of pture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urb: Iller peaks over-estimate	anization). d (storage	Assess HAT (1-3)	Good 1.60
L ssessment of NWM Performance NWM simulation tracked of pture).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urb: Iller peaks over-estimate	anization). d (storage	Assess HAT (1-3)	Good 1.60
Lessessment of NWM Performance NWM simulation tracked of outpute).	ow level of reservoir regunce:	lation and h	nigh disturbance (i.e. urb: Iller peaks over-estimate	anization). d (storage	Assess HAT (1-3)	Good 1.60

	11105025 00		PE R ABV HWY 101		UUL V		
ite Description:						Gage #	11169500
he Guadalupe River mainstem rhose much longer headwater mpties into south San Francisc najor U.S. river with a Chinook s	creeks originate in the Sa o Bay at the Alviso Slough	nta Cruz M	ountains. The Guadalupe	River		Gage Name	GUADALUPE R ABV HWY 101 A SAN JOSI CA
						County	Santa Clara
emarks from USGS Site Report	:					Area [mi^2]	160
						CNRFC	GSJC1
ow regulated by Lexington Reservoirs, and Lake Elsman (co				be		Qpeak [cfs]	6070
						Qpeak Year	2002
atershed Factors:						Q500 [cfs]	42304
recipitation:	Pavg [in] =	30.4	Prank =	1.1		Q200 [cfs]	36757
			Low rainfall relative	to region.		Q100 [cfs]	32636
rography:	ORO [%] =	101%	OROrank =	9.5		Q50 [cfs]	28264
			Very high orographic	influence.		Q25 [cfs]	23966
opography:	SL [%] =	16.1	SLrank =	2.1		Q10 [cfs]	18219
			Very ste	ep slopes.		CC	0.54
bils:	HGD [%] =	55.3	HGDrank =	3.1		PBias	82%
		Mod	derate percentage imperv	ious soils.		NSE	-7.88
ater management:	STOR [kaf] =	44.2	DISTURB =	5.0		Score (1-5)	0.72
	High level of r	eservoir re	egulation evident in obser	ved flows.		Assess	Poor
ssessment of NWM Performar						HAT (1-3)	
		throughou	t; this due to reservoir op	erations			1.75
he NWM simulation peak flows or flood control and water supp	Jly.		t; this due to reservoir op		1/17	TO 2/28/17)	
or flood control and water supp	Jly.				1/17	TO 2/28/17)	
or flood control and water supp	Jly.	PE R ABV	/ HWY 101 A SAN JOS		1/17	TO 2/28/17)	

te Description:				Gage #	11169500
	nd Middle Fork to southea	ast San Fi	nning 63.6 miles (102.4 km)[4] from rancisco Bay. The Gilroy gage site is Range.	Gage Name	SARATOGA C A SARATOGA CA
				County	Santa Clara
emarks from USGS Site Report				Area [mi^2]	9.22
				CNRFC	No
ater is diverted for municipal	use by San Jose Water Wo	orks at div	version dam 0.7 mi upstream.	Qpeak [cfs]	2730
				Qpeak Year	1955
atershed Factors:				Q500 [cfs]	2629
recipitation:	Pavg [in] =	42.0	Prank = 2.4	Q200 [cfs]	2224
			Low rainfall relative to region.	Q100 [cfs]	1926
rography:	ORO [%] =	30%	OROrank = 3.2	Q50 [cfs]	1615
			Basin rain is less than at stream gage.	Q25 [cfs]	1320
opography:	SL [%] =	30.2	SLrank = 5.0	Q10 [cfs]	944
			Steep slopes.	СС	0.56
pils:	HGD [%] =	34.8	HGDrank = 1.8	PBias	7%
			Large percentage impervious soils.	NSE	-0.04
/ater management:	STOR [kaf] =	0.0	DISTURB = 0.8	Score (1-5)	2.60
Diversions evi ssessment of NWM Performan	dent in observed flows, n ce:	iot in NW	DISTURB = 0.8 VM simulation nor the DISTURB index. but; this due to diversions for water	Score (1-5) Assess HAT (1-3)	2.60 Moderate 1.22
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows	dent in observed flows, n ce:	iot in NW	VM simulation nor the DISTURB index.	Assess	Moderate
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows	dent in observed flows, n ce:	iot in NW	VM simulation nor the DISTURB index.	Assess	Moderate
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows upply.	dent in observed flows, n ce: exceed observed flows t	hrougho	VM simulation nor the DISTURB index.	Assess	Moderate
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows upply.	dent in observed flows, n ce: exceed observed flows t	hrougho	VM simulation nor the DISTURB index.	Assess	Moderate
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows upply.	dent in observed flows, n ce: exceed observed flows t	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performan ne NWM simulation peak flows upply.	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 2000 1800	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 1: 2000 1800 1600	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 1: 2000 1800 1600 1400	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 1000 1400 1200 1000	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 1800 1600 1400 1200 1000 800	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate
Diversions evi ssessment of NWM Performant ne NWM simulation peak flows upply. 1000 1400 1200 1000	dent in observed flows, n ce: exceed observed flows t 1169500 SARATOGA	hrougho	VM simulation nor the DISTURB index. but; this due to diversions for water RATOGA CA (1/1/17TO 2/28/17)	Assess	Moderate

	1110	59800	COYOTE C NR GILROY CA		
ite Description:				Gage #	11169800
· ·	nd Middle Fork to southe	ast San F	unning 63.6 miles (102.4 km)[4] from Francisco Bay. The Gilroy gage site is o Range.	Gage Name	COYOTE C NR GILRO' CA
				County	Santa Clara
emarks from USGS Site Report				Area [mi^2]	109.2
				CNRFC	No
o storage or diversion upstrea	n from station.			Qpeak [cfs]	11500
				Qpeak Year	2017
/atershed Factors:				Q500 [cfs]	20660
recipitation:	Pavg [in] =	24.0	Prank = 0.3	Q200 [cfs]	17549
			Low rainfall relative to region.	Q100 [cfs]	15267
rography:	ORO [%] =	-3%	OROrank = 0.3	Q50 [cfs]	12871
			Basin rain is less than at stream gage.	Q25 [cfs]	10575
opography:	SL [%] =	25.6	SLrank = 4.1	Q10 [cfs]	7613
			Steep slopes.	СС	0.88
oils:	HGD [%] =	72.1	HGDrank = 4.2	PBias	31%
			Large percentage impervious soils.	NSE	0.41
/ater management:	STOR [kaf] =	0.3	DISTURB = 0.6	Score (1-5)	2.98
			No regulation and lttle disturbance.	Assess	Moderate
ssessment of NWM Performar he NWM simulation moderated otal runoff volumes (Pbias). Be	y well with observed flow		t peaks are over-estimated as is the	Assess HAT (1-3)	Moderate 2.22
he NWM simulation moderatel otal runoff volumes (Pbias). Be	y well with observed flow tter rainfall tracking could	i resolve	t peaks are over-estimated as is the		
he NWM simulation moderate otal runoff volumes (Pbias). Be	y well with observed flow tter rainfall tracking could	a resolve	t peaks are over-estimated as is the e the overprediction.		
he NWM simulation moderated otal runoff volumes (Pbias). Be	y well with observed flow tter rainfall tracking could 1169800 COYOTE C I	a resolve	t peaks are over-estimated as is the e the overprediction.		
he NWM simulation moderated otal runoff volumes (Pbias). Be 14000 12000	y well with observed flow tter rainfall tracking could 1169800 COYOTE C I	a resolve	t peaks are over-estimated as is the e the overprediction.		
he NWM simulation moderate btal runoff volumes (Pbias). Be 14000 12000 10000 8000 6000	y well with observed flow tter rainfall tracking could 1169800 COYOTE C I	a resolve	t peaks are over-estimated as is the e the overprediction.		
he NWM simulation moderated otal runoff volumes (Pbias). Be	y well with observed flow tter rainfall tracking could 1169800 COYOTE C I	a resolve	t peaks are over-estimated as is the e the overprediction.		

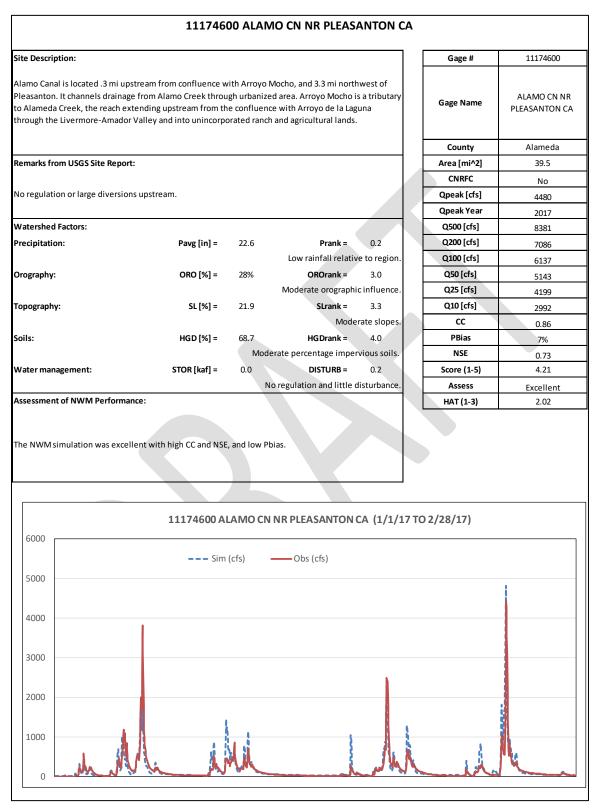
	11172945 A	LAMED	A C AB DIV DAM N	NR SUNOL	CA	
Site Description:					Gage #	11172945
Alameda Creek is the largest water miles (1,813 square kilometers), or watershed includes three man-ma Reservoir. This site is just above a d	about 20% of the total de reservoirs: Lake Del	l drainage Valle, Sar	area for the south Bay. The Antonio Reservoir and Ca	e	Gage Name	ALAMEDA C AB DIV DAM NR SUNOL CA
					County	Alameda
Remarks from USGS Site Report:					Area [mi^2]	33.3
					CNRFC	No
No regulation or diversion upstrea	m from gage				Qpeak [cfs]	5730
					Qpeak Year	2017
Watershed Factors:					Q500 [cfs]	7089
Precipitation:	Pavg [in] =	24.6	Prank =	0.4	Q200 [cfs]	5984
			Low rainfall relative	to region.	Q100 [cfs]	5174
Orography:	ORO [%] =	-6%	OROrank =	0.0	Q50 [cfs]	4328
			Moderate orographic	influence.	Q25 [cfs]	3525
Topography:	SL [%] =	26.7	SLrank =	4.3	Q10 [cfs]	2503
			Ste	ep slopes.	СС	0.88
Soils:	HGD [%] =	65.0	HGDrank =	3.8	PBias	-23%
		Mo	derate percentage imperv	ious soils.	NSE	0.75
Water management:	STOR [kaf] =	0.0	DISTURB =	0.2	Score (1-5)	3.87
			Non	egulation.	Assess	Coord
			1101	eguiation.	AJJCJJ	6000
Assessment of NWM Performance		nt.			HAT (1-3)	Good 1.41
	od and almost exceller		CAB DIV DAM NR SI		HAT (1-3)	1.41
The NWM simulation was rated go	od and almost exceller	LAMEDA			HAT (1-3)	1.41
The NWM simulation was rated go	od and almost exceller 11172945 Al	LAMEDA	CAB DIV DAM NR SI		HAT (1-3)	1.41
The NWM simulation was rated go 7000 6000	od and almost exceller 11172945 Al	LAMEDA	CAB DIV DAM NR SI		HAT (1-3)	1.41
The NWM simulation was rated go 7000 6000 5000	od and almost exceller 11172945 Al	LAMEDA	CAB DIV DAM NR SI		HAT (1-3)	1.41
7000	od and almost exceller 11172945 Al	LAMEDA	CAB DIV DAM NR SI		HAT (1-3)	1.41
The NWM simulation was rated go 7000 6000 5000 4000 3000	od and almost exceller 11172945 Al	LAMEDA	CAB DIV DAM NR SI		HAT (1-3)	1.41

ite Description:				Gage #	11173200
access because of its usage as di	owned by the San Franciso rinking water. Bounded to	the eas	n) river in Santa Clara County, r Department and is closed to public st by Oak Ridge and to the west by ir where it joins Calaveras Creek.	Gage Name	ARROYO HONDO NE SAN JOSE CA
				County	Santa Clara
Remarks from USGS Site Report	:			Area [mi^2]	76.9
				CNRFC	No
lo regulation or diversion upstr	eam from station.			Qpeak [cfs]	7,480
				Qpeak Year	2017
Vatershed Factors:				Q500 [cfs]	16656
recipitation:	Pavg [in] =	24.5	Prank = 0.4	Q200 [cfs]	14197
			Low rainfall relative to region.	Q100 [cfs]	12388
Drography:	ORO [%] =	-5%	OROrank = 0.1	Q50 [cfs]	10486
			Basin rain is less than at stream gage.	Q25 [cfs]	8658
opography:	SL [%] =	26.7	SLrank = 4.3	Q10 [cfs]	6288
			Moderate to high slopes.	сс	0.90
oils:	HGD [%] =	73.3	HGDrank = 4.3	PBias	-19%
			Large percentage impervious soils.	NSE	0.79
Vater management:	STOR [kaf] =	0.5	DISTURB = 0.4	Score (1-5)	4.07
Vater management:	STOR [kaf] =	0.5	DISTURB = 0.4 No regulation and Ittle disturbance.	Score (1-5) Assess	4.07 Excellent
Vater management: Assessment of NWM Performar	ice:		No regulation and Ittle disturbance.		
Assessment of NWM Performar	ice:		No regulation and Ittle disturbance.	Assess	Excellent
Assessment of NWM Performar	ice:		No regulation and Ittle disturbance.	Assess	Excellent
Assessment of NWM Performan	closely with observations	; lower	No regulation and Ittle disturbance. Pbias indicated less rain.	Assess HAT (1-3)	Excellent
Assessment of NWM Performar	closely with observations	; lower	No regulation and Ittle disturbance.	Assess HAT (1-3)	Excellent
Assessment of NWM Performan	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
Assessment of NWM Performan The NWM simulation ocompars	closely with observations	; lower	No regulation and Ittle disturbance. Pbias indicated less rain.	Assess HAT (1-3)	Excellent
Assessment of NWM Performan	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
Assessment of NWM Performan The NWM simulation ocompars	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
Assessment of NWM Performan	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
the NWM simulation ocompars	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
Assessment of NWM Performan The NWM simulation ocompars The NWM simulation ocompars 1 8000 7000 6000 5000 4000	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent
Assessment of NWM Performan The NWM simulation ocompars	nce: closely with observations 1162570 ARROYO He	; lower	No regulation and Ittle disturbance. Pbias indicated less rain. NR SAN JOSE CA (1/1/17 TO 2/28/	Assess HAT (1-3)	Excellent

2000

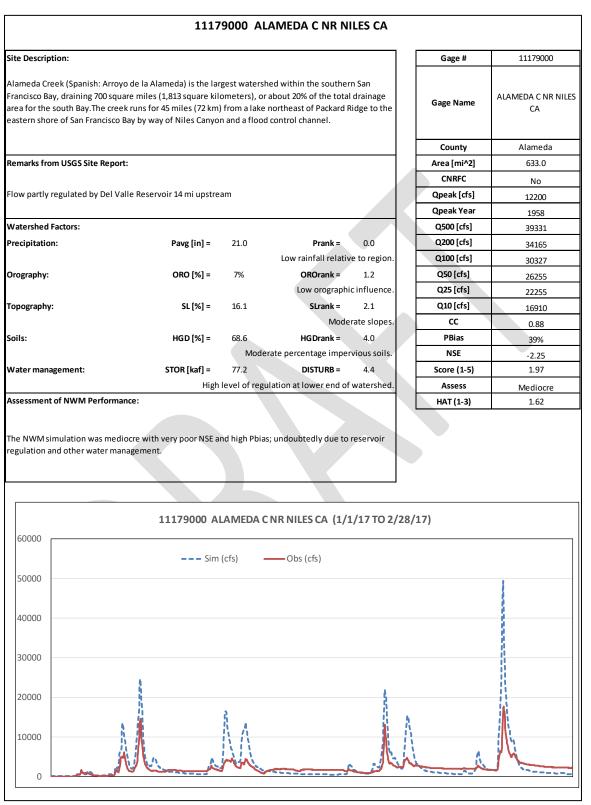
0

Precipitation Informat 11173510 ALAMEDA C BL CALAVERAS C NR SUNOL CA 11173510 Site Description: Gage # Alameda Creek is the largest watershed within the southern San Francisco Bay, draining 700 square miles (1,813 square kilometers), or about 20% of the total drainage area for the south Bay. Two-thirds ALAMEDA C BL of the watershed is in Alameda County including the reach through the Sunol Valley, the rest is in Santa Gage Name CALAVERAS C NR Clara County. The watershed includes three man-made reservoirs: Lake Del Valle, San Antonio SUNOL CA Reservoir and Calaveras Reservoir. Alameda County Remarks from USGS Site Report: Area [mi^2] 139.0 CNRFC Flow regulated by Calaveras Reservoir, usable capacity, 96,800 acre-ft, 1.1 mi upstream from gage and No by diversion dam on Alameda Creek, 2.9 mi upstream. Dead storage, 3,200 acre-ft. Flow is diverted out Qpeak [cfs] 5220 of basin from Calaveras Reservoir by city and county of San Francisco for domestic use. **Qpeak Year** 2017 Watershed Factors: Q500 [cfs] 37483 Q200 [cfs] 0.4 Precipitation: Pavg [in] = 24.5 Prank = 32554 Low rainfall relative to region. Q100 [cfs] 28892 OROrank = Q50 [cfs] Orography: ORO [%] = 9% 1.3 25008 Moderate orographic influence. Q25 [cfs] 21193 Q10 [cfs] SLrank = Topography: SL [%] = 25.7 4.1 16097 Steep slopes. сс 0.68 PBias Soils: HGD [%] = 69.2 HGDrank = 40 -24% Moderate percentage impervious soils. NSE -1.99 DISTURB = 2.9 Score (1-5) Water management: STOR [kaf] = 100.5 2.25 Reservoir regulation and diversions. Assess Moderate Assessment of NWM Performance: HAT (1-3) 1.61 The NWM simulation was rated moderate, but reservoir regu;lation is evident with observed peak flows lower than NWM and low flows higher. 11173510 ALAMEDA C BL CALAVERAS C NR SUNOL CA (1/1/17 TO 2/28/17) 12000 --- Sim (cfs) -----Obs (cfs) 10000 8000 6000 4000



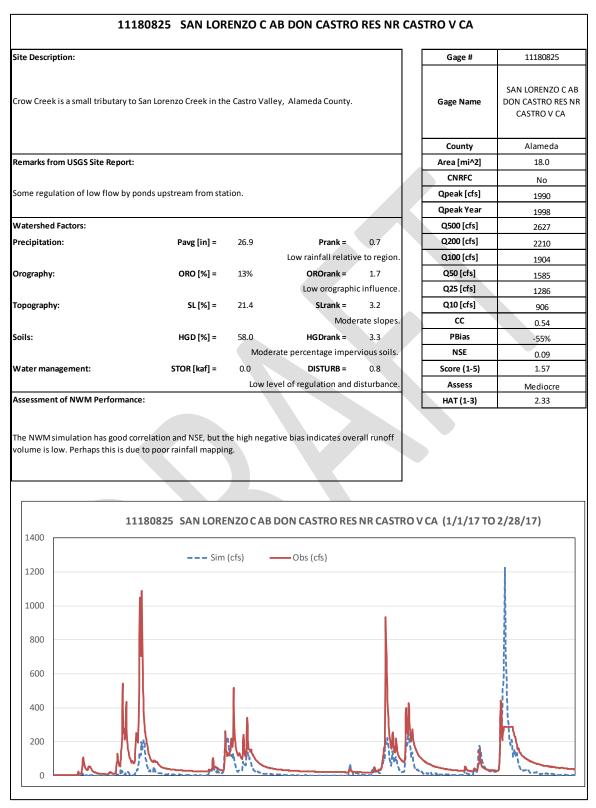
	11173575 A	\LAME	DA C BL WELCH C N	R SUNOL O	CA	
te Description:					Gage #	11173575
ameda Creek is the largest w iles (1,813 square kilometers the watershed is in Alameda ara County. The watershed in eservoir and Calaveras Reserv), or about 20% of the tota County including the read cludes three man-made re	l drainage ch through	area for the south Bay. Two the Sunol Valley, the rest	o-thirds s in Santa	Gage Name	ALAMEDA C BL WELC C NR SUNOL CA
					County	Alameda
emarks from USGS Site Repor	t:				Area [mi^2]	149.0
ow regulated by Calaveras Re	servoir, usable capacity, 9	6,800 acre	-ft, 3.7 mi upstream from g	age and	CNRFC	No
diversion dam on Alameda (rted out of basin from Cala	veras	Qpeak [cfs]	5750
eservoir by city and county of	San Francisco for domesti	cuse.			Qpeak Year	2002
atershed Factors:					Q500 [cfs]	39790
ecipitation:	Pavg [in] =	24.5	Prank =	0.4	Q200 [cfs]	34566
			Low rainfall relative	to region.	Q100 [cfs]	30684
ography:	ORO [%] =	17%	OROrank =	2.1	Q50 [cfs]	26566
			Moderate orographic	nfluence.	Q25 [cfs]	22519
pography:	SL [%] =	25.8	SLrank =	4.1	Q10 [cfs]	17112
			Ste	ep slopes.	CC	0.72
ils:	HGD [%] =	68.8	HGDrank =	4.0	PBias	-22%
		Mo	derate percentage impervi	ous soils.	NSE	-1.88
ater management:	STOR [kaf] =	100.5	DISTURB =	2.9	Score (1-5)	2.32
			Reservoir regulation and d	iversions.	Assess	Moderate
ows lower than NWM and low	nows mgner.					
12000	11173575 A	LAMEDA	C BL WELCH C NR SU	NOLCA (1/	1/17 TO 2/28/1	7)
12000	11173575 A		Obs (cfs)	NOLCA (1/	1/17 TO 2/28/1	7)
10000				NOLCA (1/	1/17 TO 2/28/1	7)
8000				NOLCA (1/	1/17 TO 2/28/1	7)
10000				NOLCA (1/	1/17 TO 2/28/1	7)
8000				NOLCA (1/	1/17 TO 2/28/1	7)

ite Description:					Γ	Gage #	11174000
an Antonio Creek is a 24.4-kild astern edge of Santa Clara Co 968 m) on the southwest slop onfluence with Arroyo Bayo[6 Del Valle to join Arroyo de la La ay.	unty just west of its border es of Mount Stakes and de i] forms the source of Arroy	r with Sta scends ir yo Valle.	anislaus County. It arises at ito the San Antonio Valley. Arroyo Valle proceeds thro	3,177 feet Its ough Lake		Gage Name	SAN ANTONIO C NR SUNOL CA
						County	Alameda
emarks from USGS Site Repor	t:					Area [mi^2]	37.0
						CNRFC	ACSC1
lows regulated by Lake San Ar	ntonio located 0.6 mi upstr	eam of g	age.			Qpeak [cfs]	624
						Qpeak Year	2017
Vatershed Factors:						Q500 [cfs]	12009
recipitation:	Pavg [in] =	22.7	Prank =	0.2		Q200 [cfs]	10388
			Low rainfall relative	e to region.		Q100 [cfs]	9183
Prography:	ORO [%] =	28%	OROrank =	3.0		Q50 [cfs]	7907
			Moderate orographic	influence.		Q25 [cfs]	6665
opography:	SL [%] =	21.9	SLrank =	3.3		Q10 [cfs]	5022
			Moder	ate slopes.		сс	0.09
oils:	HGD [%] =	68.7	HGDrank =	4.0		PBias	-61%
		N	oderate percentage imper	vious soils.		NSE	-0.04
Vater management:	STOR [kaf] =	50.5	DISTURB =	4.0		Score (1-5)	1.03
				isturbanas			
			No regulation and little d	isturbance.		Assess	Mediocre
ussessment of NWM Performa he NWM simulation was med egulation and other water ma	iocre with very poor NSE a	nd Pbias				Assess HAT (1-3)	Mediocre 0.00
he NWM simulation was med	iocre with very poor NSE a nagement.			voir	то 2,	HAT (1-3)	
he NWM simulation was med	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	то 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma	iocre with very poor NSE a nagement.		; undoubtedly due to reser	voir	то 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	то 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000 6000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	то 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000 6000 5000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	TO 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000 6000 5000 4000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	TO 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000 6000 5000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	TO 2,	HAT (1-3)	
he NWM simulation was med egulation and other water ma 9000 8000 7000 6000 5000 4000 3000	iocre with very poor NSE a nagement. 11174000 SA		; undoubtedly due to reser	voir	TO 2,	HAT (1-3)	0.00



	1117650	0 ARROY	O VALLE NR LIVERMORE CA		
Site Description:				Gage #	11176500
				Gage Name	ARROYO VALLE NR LIVERMORE CA
				County	Alameda
Remarks from USGS Site Report				Area [mi^2]	147.0
				CNRFC	No
lows regulated by Lake San Ant	onio located 0.6 mi upstr	ream of gage	2	Qpeak [cfs]	12200
				Qpeak Year	1958
Vatershed Factors:				Q500 [cfs]	39331
Precipitation:	Pavg [in] =	22.0	Prank = 0.1	Q200 [cfs]	34165
	01.1	-	Low rainfall relative to region.	Q100 [cfs]	30327
Drography:	ORO [%] =	-6%	OROrank = 0.0	Q50 [cfs]	26255
			Low orographic influence.	Q25 [cfs]	22255
opography:	SL [%] =	19.0	SLrank = 2.7	Q10 [cfs]	16910
			Moderate slopes.	СС	0.82
oils:	HGD [%] =	67.9	HGDrank = 4.0	PBias	56%
			erate percentage impervious soils.	NSE	0.04
Vater management:	STOR [kaf] =	228.0	DISTURB = 4.6	Score (1-5)	1.59
0					4
	High	level of reg	ulation at lower end of watershed.	Assess	Mediocre
Assessment of NWM Performar	ice: pcre with very poor NSE a		ulation at lower end of watershed. ndoubtedly due to reservoir	Assess HAT (1-3)	Mediocre 1.04
The NWM simulation was medic	ice: pcre with very poor NSE a				
he NWM simulation was medic	ice: pcre with very poor NSE a				
he NWM simulation was medic	cce: bcre with very poor NSE a agement.	nd Pbias; un		HAT (1-3)	
he NWM simulation was medic	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic egulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic egulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic egulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic egulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic regulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
The NWM simulation was medic egulation and other water man 14000 12000 10000 8000 6000	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	
he NWM simulation was medic egulation and other water man	cce: agement. 11176500 AF	nd Pbias; un	ndoubtedly due to reservoir	HAT (1-3)	

	11176900 A	ARROYO	DE LA LAGUNA A	VERONA	CA	
te Description:					Gage #	11176900
rroyo de la Laguna is a 7.5-mile iginates at the confluences of d by tributaries in the Amador ibutaries include Arroyo Valle ameda Creek which in turn flo	South San Ramon Creek a Valley and certain easter and Sinbad Creek. Arroyc	and Arroyo N rn slope drai o del la Lagui	Aocho. The Arroyo de la inages of the Diablo Ran	Laguna is ge; these	Gage Name	ARROYO DE LA LAGUNA A VERONA CA
					County	Alameda
emarks from USGS Site Report	:				Area [mi^2]	403.0
our portly regulated by Del Val	la Dacamuair 14 mi unatra	ana haginni	ng in Contombor 1000 o	ana situ	CNRFC	ADLC1
ow partly regulated by Del Val 7,100 acre-ft. Water imported f			ng in September 1968, G	apacity,	Qpeak [cfs]	11400
, ,					Qpeak Year	1982
atershed Factors:					Q500 [cfs]	93627
ecipitation:	Pavg [in] =	22.6	Prank =	0.2	Q200 [cfs]	81576
			Low rainfall relative	e to region.	Q100 [cfs]	72631
rography:	ORO [%] =	-4%	OROrank =	0.2	Q50 [cfs]	63134
			Low orographic	influence.	Q25 [cfs]	53731
opography:	SL [%] =	23.4	SLrank =	3.6	Q10 [cfs]	41074
			Moder	ate slopes.	cc	0.89
pils:	HGD [%] =	78.0	HGDrank =	4.6	PBias	70%
		Mode	erate percentage imperv	vious soils.	NSE	-5.03
ater management:	STOR [kaf] =	228.0	DISTURB =	4.6	Score (1-5)	1.20
	High	level of reg	ulation at lower end of v	vatershed.	Assess	Mediocre
ssessment of NWM Performan ne NWM simulation was medic gulation and other water man	ocre with very poor NSE a	nd Pbias; un			HAT (1-3)	1.11
ne NWM simulation was medic	ocre with very poor NSE a	nd Pbias; un			HAT (1-3)	
ne NWM simulation was medic gulation and other water man	ocre with very poor NSE a agement.			voir		1.11
ne NWM simulation was medic	ocre with very poor NSE a agement.	RROYO DE	doubtedly due to reserv	voir		1.11
ne NWM simulation was medic gulation and other water man	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11
e NWM simulation was medic gulation and other water man	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11
40000	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11
e NWM simulation was medic gulation and other water man 40000 35000 30000	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11
40000 35000 20000 25000 15000	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11
40000 35000 30000 25000 20000	ocre with very poor NSE ar agement. 11176900 AF	RROYO DE	doubtedly due to reserv	voir		1.11



				тү са			
Site Description:					F	Gage #	11180500
Dry Creek is a small tributary to A dighway 238 in Decoto District in	••		-	n State		Gage Name	DRY C A UNION CIT CA
					_	County	Alameda
emarks from USGS Site Report:					-	Area [mi^2]	9.4
					-	CNRFC	No
lo regulation or diversion upstre	am from station					Qpeak [cfs]	1680
						Qpeak Year	1959
Vatershed Factors:						Q500 [cfs]	2387
recipitation:	Pavg [in] =	26.5	Prank =	0.6		Q200 [cfs]	2007
			Low rainfall relative	to region.		Q100 [cfs]	1729
)rography:	ORO [%] =	35%	OROrank =	3.7	F	Q50 [cfs]	1439
			Low orographic	influence.	F	Q25 [cfs]	1166
opography:	SL [%] =	19.4	SLrank =	2.8		Q10 [cfs]	821
			Moder	ate slopes.		сс	0.39
oils:	HGD [%] =	58.0	HGDrank =	2.3		PBias	-57%
		Mode	erate percentage imperv	vious soils.		NSE	-0.08
Vater management:	STOR [kaf] =	0.0	DISTURB =	0.6		Score (1-5)	1.26
	No	regulation	or diversion upstream fr	om station		Assess	Mediocre
he NWM simulation was medio	:e:				E	Assess HAT (1-3)	Mediocre 0.50
The NWM simulation was medioo	ze: cre with very poor NSE a	nd Pbias. Po		y cause of	/17)		
Assessment of NWM Performant	ze: cre with very poor NSE a	nd Pbias. Po	or rainfall mapping likel	y cause of	/17)		
The NWM simulation was mediooperformance.	cre with very poor NSE and the set of the se	nd Pbias. Po	or rainfall mapping like	y cause of	/17)		
The NWM simulation was medion berformance.	cre with very poor NSE and the set of the se	nd Pbias. Po	or rainfall mapping like	y cause of	/17)		
The NWM simulation was medion berformance.	cre with very poor NSE and the set of the se	nd Pbias. Po	or rainfall mapping like	y cause of	/17)		
The NWM simulation was medion berformance.	cre with very poor NSE and the set of the se	nd Pbias. Po	or rainfall mapping like	y cause of	/17)		
The NWM simulation was medio Derformance. 700 600 500 400 300	cre with very poor NSE and the set of the se	nd Pbias. Po	or rainfall mapping like	y cause of	/17)		

te Description:				Gage #	11180700
e Alameda Flood Control C eek from flooding Niles, Fr)'s to 1960's. ⁻	This channel prevented Alameda	Gage Name	ALAMEDA C FLOO CHANNEL A UNIO CITY CA
				County	Alameda
emarks from USGS Site Rep	ort:			Area [mi^2]	???
is stream is a distributary o	of Alameda Creek, a diversio	n by Alamed	a County Water District to	CNRFC	No
		tion; additio	nal percolation to ground water	Qpeak [cfs]	25500
placing check dams in cha	nnel.			Qpeak Year	1998
atershed Factors:				Q500 [cfs]	
ecipitation:	Pavg [in] =	22.0	Prank = 0.1	Q200 [cfs]	
			Low rainfall relative to region.	Q100 [cfs]	
rography:	ORO [%] =	29%	OROrank = 3.1	Q50 [cfs]	
			Low orographic influence.	Q25 [cfs]	
pography:	SL [%] =	18.8	SLrank = 2.6	Q10 [cfs]	
			Moderate slopes.	СС	0.89
ils:	HGD [%] =	67.1	HGDrank = 3.9	PBias	30%
		Mode	erate percentage impervious soils.	NSE	-1.99
ater management:	STOR [kaf] =	232.5	DISTURB = 4.4	Score (1-5)	2.20
Ū.			DISTURB = 4.4 evel of regulation and disturbance.	Assess	Moderate
ater management: seessment of NWM Perforr		High le	evel of regulation and disturbance.		
sessment of NWM Perform	mance: n't make much sense to incl	High le	evel of regulation and disturbance. M assessment.	Assess HAT (1-3)	Moderate 1.75
sessment of NWM Perform	mance: n't make much sense to incl	High le	evel of regulation and disturbance.	Assess HAT (1-3)	Moderate 1.75
is site so regulated it does	mance: n't make much sense to incl	High le ude it in NWI	evel of regulation and disturbance. M assessment.	Assess HAT (1-3)	Moderate 1.75
seessment of NWM Perform	nance: n't make much sense to inclu 11180700 ALAMED	High le ude it in NWI	evel of regulation and disturbance. M assessment.	Assess HAT (1-3)	Moderate 1.75
seessment of NWM Perform	nance: n't make much sense to inclu 11180700 ALAMED	High le ude it in NWI	evel of regulation and disturbance. M assessment.	Assess HAT (1-3)	Moderate 1.75
50000 40000	nance: n't make much sense to inclu 11180700 ALAMED	High le ude it in NWI	evel of regulation and disturbance. M assessment.	Assess HAT (1-3)	Moderate 1.75

te Description:						Gage #	11180900
ow Creek is a small tributary to S	an Lorenzo Creek in th	e Castro Vall	ley, Alameda County.			Gage Name	CROW C NR HAYWARD CA
					_	County	Alameda
emarks from USGS Site Report:						Area [mi^2]	10.5
						CNRFC	No
o regulation or diversion upstrea	m from station.					Qpeak [cfs]	1990
						Qpeak Year	1998
atershed Factors:						Q500 [cfs]	2627
ecipitation:	Pavg [in] =	26.4	Prank =	0.6		Q200 [cfs]	2210
			Low rainfall relative	to region.		Q100 [cfs]	1904
ography:	ORO [%] =	8%	OROrank =	1.3		Q50 [cfs]	1585
			Low orographic	influence.		Q25 [cfs]	1286
pography:	SL [%] =	20.8	SLrank =	3.6		Q10 [cfs]	906
			Moder	ate slopes.		cc	0.81
ils:	HGD [%] =	58.0	HGDrank =	3.3		PBias	-31%
		Mode	rate percentage imperv	ious soils.		NSE	0.61
ater management:	STOR [kaf] =	0.0	DISTURB =	0.6		Score (1-5)	3.35
		0.0	DISTURD =	0.0		5core (1-5)	
			ervoir regulation and di			Assess	Good
sessment of NWM Performances	Low elation and NSE, but th	v level of res	ervoir regulation and di	sturbance.			
e NWM simulation has good corr Jume is low. Perhaps this is due	Low elation and NSE, but the	y level of res	ervoir regulation and di	sturbance. all runoff		Assess	Good
e NWM simulation has good corr	Low elation and NSE, but the	r level of res	ervoir regulation and di	sturbance. all runoff		Assess	Good
te NWM simulation has good corrolume is low. Perhaps this is due 1000000000000000000000000000000000000	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good
te NWM simulation has good corrolume is low. Perhaps this is due 1 1800 1600	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good
Issessment of NWM Performance NWM simulation has good corr Jume is low. Perhaps this is due 1111 1800 1600 1400	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good
Issessment of NWM Performances In NWM simulation has good correlation is low. Perhaps this is due In 1800 In 1600 In 1400 In 1200 In I	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good
Interpretation of NWM Performances of NWM simulation has good corrolume is low. Perhaps this is due to the second	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good
Image: Sessment of NWM Performance: Image: Sessment of NWM Performance: </td <td>Low elation and NSE, but th to poor rainfall mappin</td> <td>r level of res</td> <td>ervoir regulation and di ative bias indicates over</td> <td>sturbance. all runoff</td> <td></td> <td>Assess</td> <td>Good</td>	Low elation and NSE, but th to poor rainfall mappin	r level of res	ervoir regulation and di ative bias indicates over	sturbance. all runoff		Assess	Good

					_		
te Description:					_	Gage #	11180960
ull Creek is a small tributary to een sedimentation issues wit nd has been a continuing main	h the Cull Creek Reservoir					Gage Name	CULL C AB CULL C RE NR CASTRO VALLEY C
						County	Alameda
emarks from USGS Site Repor	t:					Area [mi^2]	5.8
						CNRFC	No
ow partly regulated by Cull C apacity, 380 acre-ft, 7 mi upstr		10 acre-ft, an	nd by Don Castro Reserv	oir,		Qpeak [cfs]	1690
	cam.					Qpeak Year	1982
/atershed Factors:						Q500 [cfs]	1575
recipitation:	Pavg [in] =	26.7	Prank =	0.7		Q200 [cfs]	1322
			Low rainfall relative	to region.		Q100 [cfs]	1137
rography:	ORO [%] =	9%	OROrank =	1.3	F	Q50 [cfs]	945
			Low orographic	influence.	F	Q25 [cfs]	764
opography:	SL [%] =	20.9	SLrank =	3.6		Q10 [cfs]	537
			Moder	ate slopes.		cc	0.79
oils:	HGD [%] =	58.0	HGDrank =	3.3		PBias	-44%
			rate percentage imperv			NSE	0.53
later management:	STOR [kaf] =				-		
		0.0	DISTURB =	0.8		Score (1-5)	2.8/
/ater management:		0.0 / level of res	DISTURB =	0.8 sturbance.	H	Score (1-5)	2.87
ssessment of NWM Performa ne NWM simulation has good plume is low. Perhaps this is c	Low nce: correlation and NSE, but th	v level of res	ervoir regulation and di	sturbance.		Score (1-5) Assess HAT (1-3)	2.87 Moderate 1.16
ssessment of NWM Performative NWM simulation has good olume is low. Perhaps this is o	Low nce: correlation and NSE, but th	v level of res	ervoir regulation and di	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate
ssessment of NWM Performation has good blume is low. Perhaps this is c	Low nce: correlation and NSE, but th lue to poor rainfall mappir	v level of res	ervoir regulation and di	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate
ssessment of NWM Performative NWM simulation has good olume is low. Perhaps this is o	Low nce: correlation and NSE, but th lue to poor rainfall mappin	v level of res	ervoir regulation and di ative bias indicates over S NR CASTRO VALL	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate
ssessment of NWM Performative NWM simulation has good olume is low. Perhaps this is of 1200	Low nce: correlation and NSE, but th lue to poor rainfall mappin	v level of res	ervoir regulation and di ative bias indicates over S NR CASTRO VALL	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate
ssessment of NWM Performative NWM simulation has good olume is low. Perhaps this is of 1200	Low nce: correlation and NSE, but th lue to poor rainfall mappin	v level of res	ervoir regulation and di ative bias indicates over S NR CASTRO VALL	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate
ssessment of NWM Performation has good blume is low. Perhaps this is of 1200	Low nce: correlation and NSE, but th lue to poor rainfall mappin	v level of res	ervoir regulation and di ative bias indicates over S NR CASTRO VALL	sturbance. all runoff	1/17	Assess HAT (1-3)	Moderate

			ORENZO C A HAY.			
ite Description:					Gage #	11181000
an Lorenzo Creek is a 10.7-mile alifornia, into San Francisco Bay nd is the main tributary within ulpher Creek, which had most o sk of flooding in downtown Ha Id course into the Bay.	y at the Hayward Regiona the San Lorenzo Watersh of its flow diverted into S	Il Shoreline ed, includir an Lorenzo	. The creek begins in Cas ng the formerly independ Creek in the 1960s to rec	tro Valley, dent duce the	Gage Name	SAN LORENZO C A HAYWARD CA
la course into the bay.					County	Alameda
emarks from USGS Site Report:					Area [mi^2]	37.5
					CNRFC	LRZC1
low partly regulated by Cull Cre apacity, 380 acre-ft, 7 mi upstre		10 acre-ft, a	and by Don Castro Reserv	/oir,	Qpeak [cfs]	8140
					Qpeak Year	1998
/atershed Factors:					Q500 [cfs]	7852
recipitation:	Pavg [in] =	26.4	Prank =	0.6	Q200 [cfs]	6630
			Low rainfall relative	e to region.	Q100 [cfs]	5735
rography:	ORO [%] =	20%	OROrank =	2.4	Q50 [cfs]	4799
			Moderate orographic	cinfluence.	Q25 [cfs]	3911
opography:	SL [%] =	20.9	SLrank =	3.1	Q10 [cfs]	2778
			Moder	rate slopes.	CC CC	0.78
oils:	HGD [%] =	58.0	HGDrank =	3.3	PBias	-35%
		Mod	erate percentage imperv	vious soils.	NSE	0.56
/ater management:	STOR [kaf] =	0.7	DISTURB =	3.1	Score (1-5)	3.15
-			DISTORD -	3.1	30016 (1-3)	5.15
Low lev	el of reservoir regulation				Assess HAT (1-3)	Good 1.49
-	ce: orrelation and NSE, but th	and mode	rate disturbance (i.e. urb gative bias indicates over	panization).	Assess	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du	cce: orrelation and NSE, but the sulphur Creek n	h and mode	rate disturbance (i.e. urb gative bias indicates over nted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du	ce: orrelation and NSE, but th	h and mode	rate disturbance (i.e. urb gative bias indicates over nted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good co olume is low. Perhaps this is du	cce: orrelation and NSE, but the sulphur Creek n	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over nted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan the NWM simulation has good co olume is low. Perhaps this is du 1: 4500	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good co olume is low. Perhaps this is du	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good co olume is low. Perhaps this is du	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du 4500 4000 3500 3000	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du 1: 4500 4000 3500 3000 2500	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du 4500 4000 3500 3000 2500 2000	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good
Low lev ssessment of NWM Performan he NWM simulation has good c olume is low. Perhaps this is du 4500 4000 3500 3000 2500 1500	cce: orrelation and NSE, but tl ie to the Sulphur Creek n 1181000 SAN LOREN	h and mode he high neg ot represer	rate disturbance (i.e. urb gative bias indicates over inted in NWM.	panization). rall runoff	Assess HAT (1-3)	Good

ite Description:					Г	Gage #	11181040
an Lorenzo Creek is a 10.7-mile- ialifornia, into San Francisco Bay nd is the main tributary within t ulpher Creek, which had most o isk of flooding in downtown Hay Id course into the Bay.	at the Hayward Regiona he San Lorenzo Watersh f its flow diverted into S	I Shoreline. ed, includin an Lorenzo (The creek begins in Cast g the formerly independ Creek in the 1960s to red	tro Valley, dent luce the		Gage Name	SAN LORENZO C A SA LORENZO CA
					-	County	Alameda
emarks from USGS Site Report:						Area [mi^2]	44.6
						CNRFC	No
low partly regulated by Cull Creater apacity, 380 acre-ft, 7 mi upstreater apacity and the second s		10 acre-ft, ar	nd by Don Castro Reserv	oir,		Qpeak [cfs]	10300
apacity, 560 acre-it, 7 mi upstrea	1111.					Qpeak Year	1998
Vatershed Factors:						Q500 [cfs]	9115
recipitation:	Pavg [in] =	25.7	Prank =	0.6		Q200 [cfs]	7700
			Low rainfall relative	to region.		Q100 [cfs]	6664
Drography:	ORO [%] =	27%	OROrank =	2.9		Q50 [cfs]	5580
			Moderate orographic	influence.		Q25 [cfs]	4551
opography:	SL [%] =	18.0	SLrank =	2.5		Q10 [cfs]	3236
			Moder	ate slopes.		cc	0.86
oils:	HGD [%] =	57.4	HGDrank =	3.3		PBias	-42%
		Mode	erate percentage imperv	vious soils.		NSE	0.62
Vater management:	STOR [kaf] =	0.9	DISTURB =	3.5		Score (1-5)	3.12
-							
Low leve	el of reservoir regulation	and modera	ate disturbance (i.e. urb	anization).		Assess	Good
-	e: prrelation and NSE, but th	he high nega	ative bias indicates over				Good 1.92
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due	ce: prrelation and NSE, but tl	he high nega ot represent	ative bias indicates over ted in NWM.	all runoff		Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due	e: prrelation and NSE, but th	he high nega ot represent	ative bias indicates over ted in NWM.	all runoff	2/28,	Assess HAT (1-3)	
Low leve sseessment of NWM Performance he NWM simulation has good co olume is low. Perhaps this is due 11	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM.	all runoff	2/28,	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due 5000	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28/	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due 5000 4500	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28,	Assess HAT (1-3)	
Low leve sseessment of NWM Performance he NWM simulation has good cc olume is low. Perhaps this is due 11 5000 4500 4000	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28/	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due 11 5000 4500 4000 3500	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28,	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good co olume is low. Perhaps this is due 11 5000 4500 4000 3500 3000	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28,	Assess HAT (1-3)	
Low leve sseessment of NWM Performance he NWM simulation has good cc olume is low. Perhaps this is due 11 5000 4500 4500 3500 3000 2500	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28/	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good or olume is low. Perhaps this is due 11 5000 4500 4500 3000 2500 2000	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28/	Assess HAT (1-3)	
Low leve assessment of NWM Performance the NWM simulation has good oc olume is low. Perhaps this is due 111 5000 4500 4500 4000 3500 3000 2500 2000 1500	re: prrelation and NSE, but tl e to the Sulphur Creek n 181040 SAN LOREN	he high nega ot represent	ative bias indicates over ted in NWM. AN LORENZO CA (1)	all runoff	2/28,	Assess HAT (1-3)	

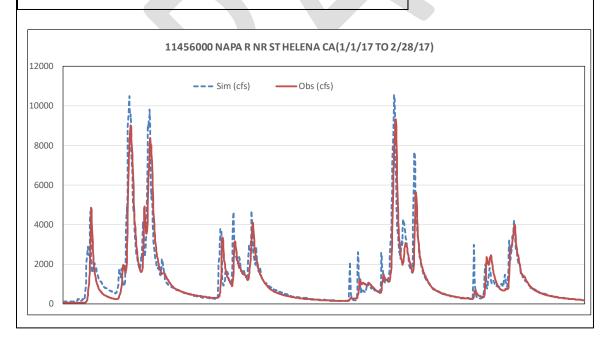
te Description:		Gage #	11182500
	lowing small headwater tributary to Walnut Creek in Contra Costa County.	Gage Name	SAN RAMON C A SAN
		Gage Name	RAMON CA
		County	Santa Clara
emarks from USGS Site Rep	ort:	Area [mi^2]	5.89
		CNRFC	No
o regulation or diversion u	ostream from station	Qpeak [cfs]	1600
		Qpeak Year	1962
atershed Factors:		Q500 [cfs]	1847
recipitation:	Pavg [in] = 26.5 Prank = 0.8	Q200 [cfs]	1563
	Rainfall mapping seems good.	Q100 [cfs]	1355
rography:	ORO [%] = 7% OROrank = 1.3	Q50 [cfs]	1136
	Relatively high bias indicates better rain mapping needed.	Q25 [cfs]	929
opography:	SL[%] = 21.6 SLrank = 3.4	Q10 [cfs]	666
	Moderate slopes.	cc	0.77
oils:	HGD [%] = 64.5 HGDrank = 3.7	PBias	25%
	High percentage impervious soils.	NSE	-0.31
ater management:	STOR [kaf] = 0.0 DISTURB = 1.0	Score (1-5)	2.25
	No regulation, but urbanization alters natural regime.	Assess	Moderate
	s moderate; high PBias and poor NSE indicate better rainfall mapping	HAT (1-3)	1.17
	s moderate; high PBias and poor NSE indicate better rainfall mapping	HAT (1-3)	1.17
ne NWM simulation rated a	s moderate; high PBias and poor NSE indicate better rainfall mapping	HAT (1-3)	1.17
ne NWM simulation rated a	s moderate; high PBias and poor NSE indicate better rainfall mapping		1.17
ne NWM simulation rated a eeded. Several of the large	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK.		1.17
ne NWM simulation rated a	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON CA SAN RAMON CA(1/1/17TO 2		1.17
ne NWM simulation rated a eeded. Several of the large	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON CA SAN RAMON CA(1/1/17TO 2		1.17
800	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON C A SAN RAMON CA(1/1/17TO Sim (cfs)Obs (cfs)		1.17
NWM simulation rated a eeded. Several of the large	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON C A SAN RAMON CA(1/1/17TO Sim (cfs)Obs (cfs)		1.17
800	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON C A SAN RAMON CA(1/1/17TO Sim (cfs)Obs (cfs)		1.17
800 700 600 500 400 300 200	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON C A SAN RAMON CA(1/1/17TO Sim (cfs)Obs (cfs)		1.17
800	s moderate; high PBias and poor NSE indicate better rainfall mapping peak flows tracked OK. 11182500 SAN RAMON C A SAN RAMON CA(1/1/17TO Sim (cfs)Obs (cfs)		1.17

11456000 NAPA R NR ST HELENA CA

Site Description:
The Napa River rises in northwe
Mayacamas Mountains of the Ca

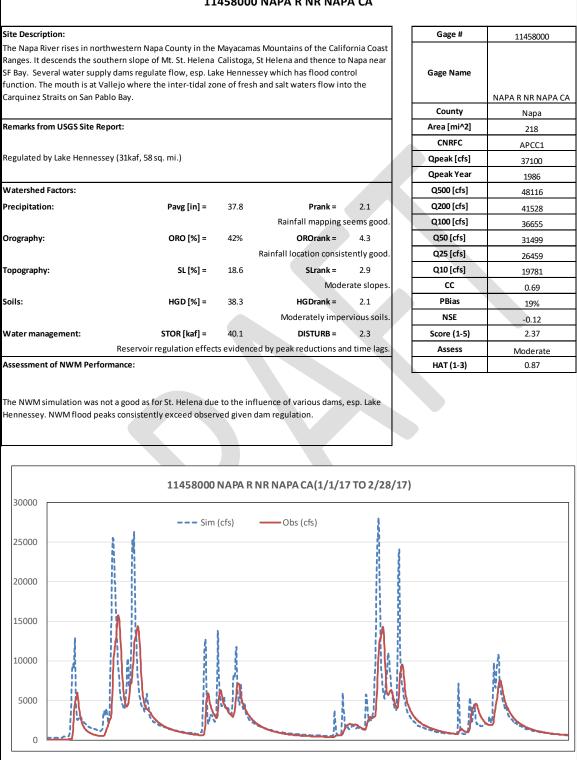
estern Napa County just south of the summit of Mt. St. Helena in the alifornia Coast Ranges. It descends the southern slope of Mt. St. Helena to Kimball Canyon Dam. It flows south for 4 miles (6 km), entering the head of the slender Napa Valley north of Calistoga. In the valley, it flows southeast past Calistoga, St Helena and thence to Napa near SF Bay.

Remarks from USGS Site Report:


Some diversion for agriculture and regulation by Bell Canyon Res (2500 af). Small diversions upstream from station for irrigation of about 1,500 acres.

Watershed Factors:			
Precipitation:	Pavg [in] =	41.1	Prank = 2.5
			Rainfall mapping seems good.
Orography:	ORO [%] =	15%	OROrank = 2.0
			Rainfall location consistently good.
Topography:	SL [%] =	20.9	SLrank = 3.3
			Moderate slopes.
Soils:	HGD [%] =	40.1	HGDrank = 2.2
			Moderately impervious soils.
Water management:	STOR [kaf] =	3.4	DISTURB = 2.5
	Some regulation, d	oes not :	seem to impact peak flow simulation.

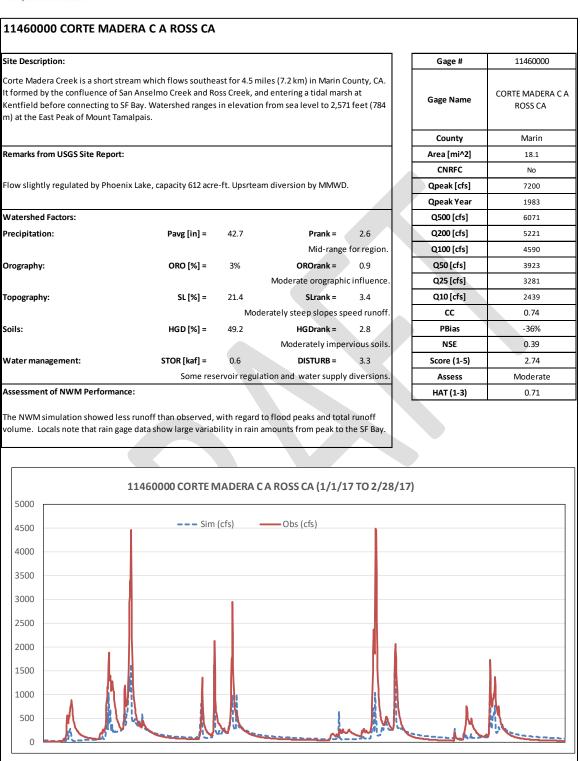
Gage #	11456000
Gage Name	NAPA R NR ST HELENA CA
County	Napa
Area [mi^2]	79
CNRFC	SHEC1
Qpeak [cfs]	18,300
Qpeak Year	2005
Q500 [cfs]	21228
Q200 [cfs]	18323
Q100 [cfs]	16169
Q50 [cfs]	13890
Q25 [cfs]	11671
Q10 [cfs]	8739
cc	0.89
PBias	8%
NSE	0.75
Score (1-5)	4.23
Assess17	Excellent
HAT (1-3)	1.29


Assessment of NWM Performance:

The NWM simulation showed generally very good results although most peak flows were slightly overestimated. Perhaps the peaks are reduced when flows through Bell Canyon Reservoir. Water balance very good.

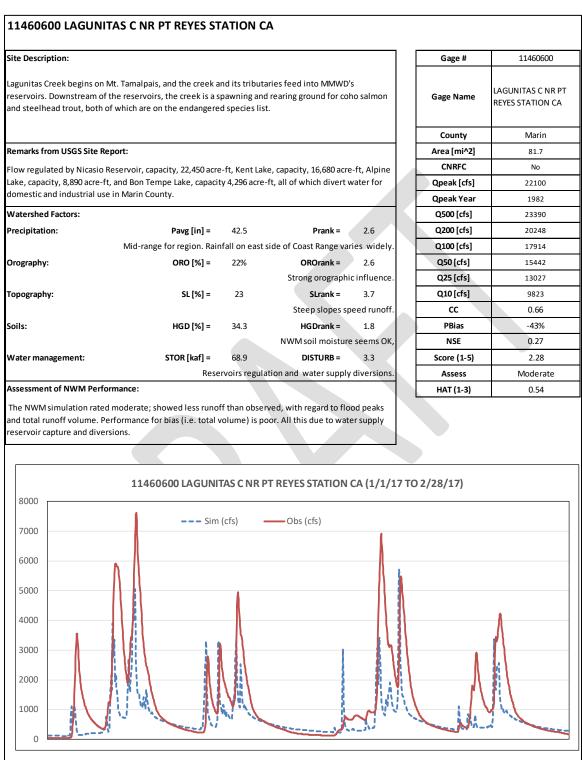
11458000 NAPA R NR NAPA CA

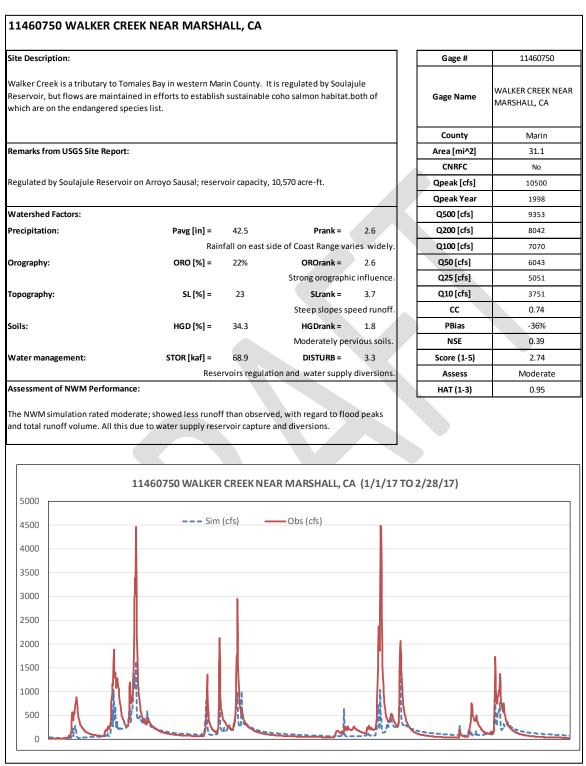
ite Description:				Gage #	11458433
onoma Creek drains south to S ooding in this increasing dens		eak flows are	e a concern for urban and local	Gage Name	SONOMA CREEK A KENWOOD CA
				County	Sonoma
emarks from USGS Site Report	<i>t</i> :			Area [mi^2]	14.3
				CNRFC	No
o regulation above station. Di	versions for irrigation of a	about 1,500 a	cres upstream.	Qpeak [cfs]	2531
				Qpeak Year	2017
/atershed Factors:				Q500 [cfs]	4324
recipitation:	Pavg [in] =	45.5	Prank = 2.9	Q200 [cfs]	3688
	Rair	nfall on east	side of Coast Range varies widely.	Q100 [cfs]	3218
rography:	ORO [%] =	15%	OROrank = 2.0	Q50 [cfs]	2723
			Strong orographic influence.	Q25 [cfs]	2251
opography:	SL [%] =	22	SLrank = 3.5	Q10 [cfs]	1641
			Steep slopes speed runoff.	cc	0.76
oils:	HGD [%] =	43.0	HGDrank = 2.4	PBias	26%
			Moderately pervious soils.	NSE	0.35
/ater management:	STOR [kaf] =	0.0	DISTURB = 1.5	Score (1-5)	2.94
			No reservoir regulation.	Assess	Moderate
ssessment of NWM Performa	nce:			HAT (1-3)	1.63
xplain these discrepancies.	11458433 SONOM	IA CREEK A	KENWOOD CA (1/1/17 TO 2/2	8/17)	
3000					
	 Sim	(cfs) -	Obs (cfs)		
2500					



			DMA C A AGUA CALIENTE CA		
ite Description:				Gage #	11458500
ionoma Creek drains south to SF looding in this increasing dense :		eak flows a	ire a concern for urban and local	Gage Name	SONOMA C A AGUA CALIENTE CA
				County	Sonoma
Remarks from USGS Site Report:				Area [mi^2]	58.4
				CNRFC	No
Records good. No regulation; som	e diversion above station	on for irrig	ation of about 2,000 acres.	Qpeak [cfs]	20300
				Qpeak Year	2005
Vatershed Factors:				Q500 [cfs]	14481
Precipitation:	Pavg [in] =	42.5	Prank = 2.6	Q200 [cfs]	12402
			Aid-range for precipiation in region.	Q100 [cfs]	10867
Drography:	ORO [%] =	35%	OROrank = 3.7	Q50 [cfs]	9248
			Strong orographic influence.	Q25 [cfs]	7687
opography:	SL [%] =	17.6	SLrank = 2.7	Q10 [cfs]	5649
			Steep slopes speed runoff.	СС	0.88
oils:	HGD [%] =	59.6	HGDrank = 3.4	PBias	1%
			Moderately impervious soils.	NSE	0.78
Nater management:	STOR [kaf] =	0.9	DISTURB = 2.3	Score (1-5)	4.46
or the assessment period the N	VM closely tracked obse	erved flow:	No reservoir regulation. s; high scores for CC and NSE and	Assess HAT (1-3)	Excellent 1.73
Assessment of NWM Performanc For the assessment period the NA rery low Pbias rates an "Excellent	VM closely tracked obse	erved flows			
for the assessment period the NV ery low Pbias rates an "Excellent	WM closely tracked obse :" rating.			HAT (1-3)	
for the assessment period the NN ery low Pbias rates an "Excellent	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
For the assessment period the NV very low Pbias rates an "Excellent	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
For the assessment period the NV rery low Pbias rates an "Excellent 10000 9000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
for the assessment period the NV rery low Pbias rates an "Excellent 10000 9000 8000 7000 6000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
For the assessment period the NV rery low Pbias rates an "Excellent 10000 9000 8000 7000 6000 5000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
For the assessment period the NV rery low Pbias rates an "Excellent 10000 9000 8000 7000 6000 5000 4000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and GUA CALIENTE CA (1/1/17 TO 2/2 Obs (cfs)	HAT (1-3)	
For the assessment period the NV rery low Pbias rates an "Excellent 10000 9000 8000 7000 6000 5000 4000 3000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and	HAT (1-3)	
For the assessment period the NV rery low Pbias rates an "Excellent 10000 9000 8000 7000 6000 5000 4000	WM closely tracked obse " rating. 11458500 SONOM	IACAAG	s; high scores for CC and NSE and GUA CALIENTE CA (1/1/17 TO 2/2 Obs (cfs)	HAT (1-3)	

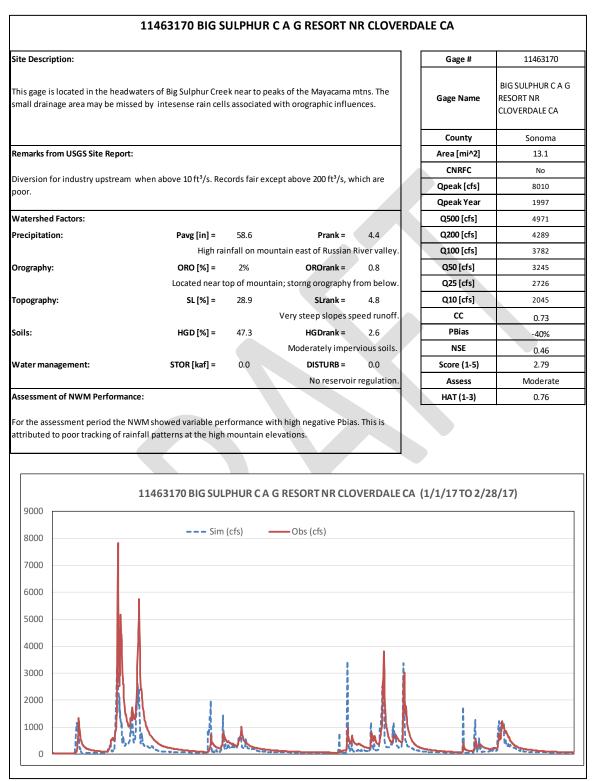
11459500 NOVATO C A NOVATO CA 11459500 Site Description: Gage # Novato Creek is a stream in eastern Marin County, CA. It originates in highlands between Red Hill and Mount Burdell above the city of Novato, California, and flows 17 miles (27 km) before emptying into NOVATO C A NOVATO Gage Name San Pablo Bay south of Petaluma Point. Approximately 20% of Novato's water supply comes from CA Stafford Lake. County Marin Remarks from USGS Site Report: Area [mi^2] 17.6 CNRFC No Flow regulated by Stafford Lake, 4,500 acre-ft. Qpeak [cfs] 5000 Qpeak Year 1983 Watershed Factors: Q500 [cfs] 5720 Q200 [cfs] 4909 Precipitation: Pavg [in] = 40.5 Prank = 2.4 Q100 [cfs] 4308 Mid-range for region. ORO [%] = OROrank = 3.4 Q50 [cfs] 3673 Orography: 32% Q25 [cfs] Moderate orographic influence. 3063 Topography: SL [%] = 19.5 SLrank = 3.0 Q10 [cfs] 2266 Moderately steep slopes speed runoff. сс 0.69 PBias 81% Soils: HGD [%] = 42.8 HGDrank = 2.3 NSE -2.32 Moderately impervious soils. STOR [kaf] = 4.4 DISTURB = Score (1-5) 0.82 Water management: 2.9 Reservoirs regulation and water supply diversions. Assess Poor Assessment of NWM Performance: HAT (1-3) 0.87 The NWM simulation showed considerably more runoff than observed, with regard to flood peaks and total runoff volume. This is in contract to Corte Madera Creek which showed the opposite. The difference is ascribed to regulation by Stafford Lake, but rainfall mapping also relevant. 11459500 NOVATO C A NOVATO C A (1/1/17 TO 2/28/17) 3000 --- Sim (cfs) -----Obs (cfs) 2500 2000 1500 1000 500 0





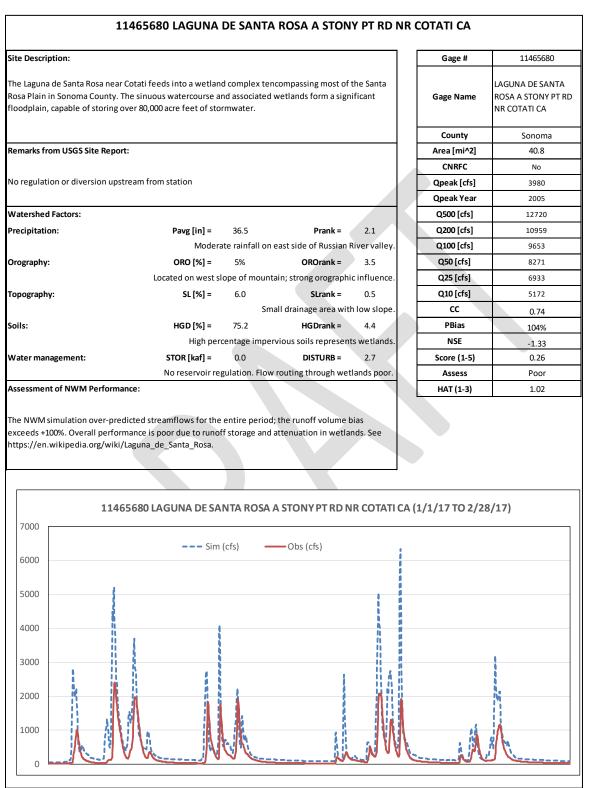
ite Description:				Gage #	11460400
agunitas Creek begins on Mt. Tamal eservoirs. Downstream of the reser nd steelhead trout, both of which a	voirs, the creek is a s	pawning and	d rearing ground for coho salmon	Gage Name	LAGUNITAS C A SAMUEL P TAYLOR STATE PARK CA
				County	Marin
emarks from USGS Site Report:				Area [mi^2]	34.3
an regulated by Kent Lake conseit		ing taka gar	agaity 8 200 ages ft and Dan	CNRFC	No
ow regulated by Kent Lake, capacit empe Lake, capacity, 4,300 acre-ft	y, 32,900 acre-tt, Alpi	іпе Lake, сар	pacity, 8,890 acre-tt, and Bon	Qpeak [cfs]	10200
				Qpeak Year	2005
atershed Factors:				Q500 [cfs]	11474
recipitation:	Pavg [in] =	46.1	Prank = 3.0	Q200 [cfs]	9932
			Mid-range for region.	Q100 [cfs]	8784
rography:	ORO [%] =	23%	OROrank = 2.6	Q50 [cfs]	7568
			Strong orographic influence.	Q25 [cfs]	6385
opography:	SL [%] =	25.4	SLrank = 4.1	Q10 [cfs]	4818
			Steep slopes speed runoff.	СС	0.76
pils:	HGD [%] =	34.0	HGDrank = 1.8	PBias	-63%
			NWM soil moisture seems OK,	NSE	0.01
/ater management:	STOR [kaf] =	46.4	DISTURB = 4.0	Score (1-5)	1.32
/ater management:			DISTURB = 4.0 ation and water supply diversions.	Score (1-5) Assess	1.32 Mediocre
Jater management: ssessment of NWM Performance: he NWM simulation rated mediocre nd total runoff volume. All this due	Rese e; showed less runoff	rvoirs regula f than observ	ation and water supply diversions. ved, with regard to flood peaks		-
ssessment of NWM Performance:	Rese e; showed less runoff	rvoirs regula f than observ	ation and water supply diversions. ved, with regard to flood peaks	Assess	Mediocre
ssessment of NWM Performance: he NWM simulation rated mediocre nd total runoff volume. All this due	Rese e; showed less runoff to water supply rese	rvoirs regula f than obserr ervoir captur	ation and water supply diversions. ved, with regard to flood peaks	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: he NWM simulation rated mediocre nd total runoff volume. All this due	Rese e; showed less runoff to water supply rese	rvoirs regula f than obserr ervoir captur	ation and water supply diversions. wed, with regard to flood peaks re and diversions.	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: he NWM simulation rated mediocre nd total runoff volume. All this due	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. wed, with regard to flood peaks re and diversions.	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre and total runoff volume. All this due 14 5000 4500 4000	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. ved, with regard to flood peaks re and diversions. MUEL P TAYLOR STATE PARK C	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre nd total runoff volume. All this due 14 5000 4500 4000 3500	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. ved, with regard to flood peaks re and diversions. MUEL P TAYLOR STATE PARK C	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre and total runoff volume. All this due 14 5000 4500 4000	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. ved, with regard to flood peaks re and diversions. MUEL P TAYLOR STATE PARK C	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre nd total runoff volume. All this due 14 5000 4500 4500 3500 3000	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. wed, with regard to flood peaks re and diversions.	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre and total runoff volume. All this due 14 5000 4500 4500 3500 3000 2500	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. wed, with regard to flood peaks re and diversions.	Assess HAT (1-3)	Mediocre 0.19
ssessment of NWM Performance: the NWM simulation rated mediocre and total runoff volume. All this due 14 5000 4500 4500 3500 3000 2500 2000	Rese e; showed less runoff to water supply rese 60400 LAGUNITA	rvoirs regula f than obser ervoir captur	ation and water supply diversions. wed, with regard to flood peaks re and diversions.	Assess HAT (1-3)	Mediocre 0.19

	1146	51000 RUS	SSIAN R NR UKIAH CA		
ite Description:				Gage #	11461000
	f Willits in Mendocino Cou	nty. It flows g	rshed springs from the Laughlin enerally southward to Redwood in the East Fork Russian River		RUSSIAN R NR UKIAH CA
				County	Mendocino
emarks from USGS Site Repor	rt:			Area [mi^2]	100
				CNRFC	UKAC1
o regulation. Diversions upst	ream for irrigation of abou	t 1,000 acres.		Qpeak [cfs]	22600
				Qpeak Year	2005
atershed Factors:				Q500 [cfs]	26242
recipitation:	Pavg [in] =	46.7	Prank = 3.0	Q200 [cfs]	22677
		NWM ra	ainfall intensity may be too high	Q100 [cfs]	20033
rography:	ORO [%] =	34%	OROrank = 3.6	Q50 [cfs]	17233
	Modera	ate bias indica	tes better rain mapping needed	. Q25 [cfs]	14503
opography:	SL [%] =	20.6	SLrank = 3.0	Q10 [cfs]	10885
			Moderate slopes	. CC	0.86
oils:	HGD [%] =	23.8	HGDrank = 1.1	PBias	16%
		Mod	lerate percentage pervious soils	. NSE	0.58
/ater management:	STOR [kaf] =	0.7	DISTURB = 1.7	Score (1-5)	3.69
		No regula	ation, except for some irrigation	. Assess	Good
WM simulation tends to over				Assess HAT (1-3)	Good 1.17
IWM simulation tends to over					
IWM simulation tends to over	r-estimate flood peaks, but	otherwise co		HAT (1-3)	
IWM simulation tends to over	r-estimate flood peaks, but	otherwise co	rresponds well to observed	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
WM simulation tends to over ows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows. 14000 12000 10000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
14000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
12000 10000 8000 6000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows. 14000 12000 10000 8000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over 14000 12000 10000 8000 6000 4000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
IWM simulation tends to over lows. 14000 12000 10000 8000 6000	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	
WM simulation tends to over ows.	r-estimate flood peaks, but	o otherwise co	rresponds well to observed UKIAH CA (1/1/17 TO 2/2	HAT (1-3)	

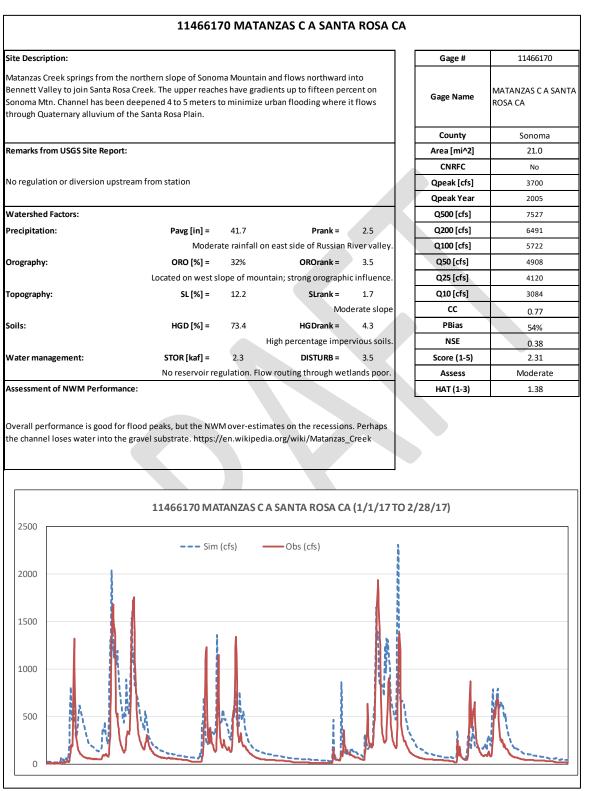


te Description:					Gage #	11461000
oject delivers ad ontroversial hydi	dditional water from th	ne Eel River, whi Valley is a rich a	ch flows into th	noma County. The Potter Valley e Russian River here via a on, with excellent soils, planted	Gage Name	RUSSIAN R NR UKIAI CA
					County	Mendocino
emarks from US	GS Site Report:				Area [mi^2]	100
					CNRFC	LAMC1
versions into Ef	fk from Eel River throug	h Potter Valley	Powerplant use	d for irrigation.	Qpeak [cfs]	18700
					Qpeak Year	1964
atershed Factor	rs:				Q500 [cfs]	24892
ecipitation:		Pavg [in] =	45.1	Prank = 2.8	Q200 [cfs]	21525
				NWM rainfall seems OK.	Q100 [cfs]	19027
rography:		ORO [%] =	7%	OROrank = 1.1	Q50 [cfs]	16381
			Low orograpol	hic influence within watershed.	Q25 [cfs]	13799
pography:		SL [%] =	20.9	SLrank = 3.1	Q10 [cfs]	10376
				Moderate slopes.	СС	0.85
oils:		HGD [%] =	32.4	HGDrank = 1.7	PBias	0%
			Mode	erate percentage pervious soils.	NSE	0.71
				er dee per ceritage per troas sonsi		
ater manageme	ent:	STOR [kaf] =	0.2	DISTURB = 2.3	Score (1-5)	4.34
ater manageme	ent:	STOR [kaf] =	0.2		Score (1-5) Assess	
ssessment of NV	WM Performance: tion captures flood pea	ks relatively we	0.2 No regula II, but over-esti	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession.		4.34 Excellent 2.33
ssessment of NV	WM Performance:	ks relatively we	0.2 No regula II, but over-esti	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession.	Assess	Excellent
ssessment of NV	WM Performance: tion captures flood pea	ks relatively we	0.2 No regula II, but over-esti	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession.	Assess	Excellent
ssessment of NV	WM Performance: tion captures flood pea his may result from aug	ks relatively we gmented flows b	0.2 No regula II, but over-esti ieng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession.	Assess HAT (1-3)	Excellent
ssessment of NV	WM Performance: tion captures flood pea his may result from aug	ks relatively we gmented flows b	0.2 No regula II, but over-esti ieng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
e NWM simulat as is small but th	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
e NWM simulat as is small but th	WM Performance: tion captures flood pea his may result from aug	ks relatively we gmented flows b	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
e NWM simulat as is small but th	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
e NWM simulat as is small but th	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
e NWM simulat as is small but th	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000 10000 8000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000 10000 8000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000 10000 8000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent
ssessment of NV ne NWM simulat as is small but th 12000 10000 8000 6000	WM Performance: tion captures flood pea his may result from aug	iks relatively we gmented flows b 1461500 EF I	0.2 No regula II, but over-esti reng offset by ir	DISTURB = 2.3 tion, except for some irrigation. mates flows on the recession. rigation losses.	Assess HAT (1-3)	Excellent

	1140	2500 KOS	SIAN R NR HOPL	AND CA		
te Description:					Gage #	11462500
ounty. Joined by the E.	s from the Laughlin Range abou Fk. below Lake Mendocino nea es into Sonoma County near Clo to guide Lake Mendocino reserv	r Ukiah, it flow verdale. Russia	rs south past vineyards t an River nr Hopland gage	to	Gage Name	Russian River near Hopland, CA
					County	Mendocino
emarks from USGS Site	Report:				Area [mi^2]	362
					CNRFC	HOPC1
ow regulated by Lake I ostream.	Mendocino 15.2 mi upstream. Di	iversions for iri	rigation of ~11,800 acres	S	Qpeak [cfs]	45000
Stream.					Qpeak Year	1955
atershed Factors:					Q500 [cfs]	85375
ecipitation:	Pavg [in] =	45.5	Prank =	2.9	Q200 [cfs]	74362
			NWM rainfall	seems OK.	Q100 [cfs]	66187
rography:	ORO [%] =	21%	OROrank =	2.5	Q50 [cfs]	57508
		Low orograp	ohic influence within w	atershed.	Q25 [cfs]	48922
pography:	SL [%] =	21.1	SLrank =	3.1	Q10 [cfs]	37373
			Modera	ate slopes.	сс	0.63
vils:	HGD [%] =	27.5	HGDrank =	1.4	PBias	-46%
		Mo	derate percentage perv	vious soils.	NSE	-0.20
ater management:	STOR [kaf] =	156.2	DISTURB =	3.8	Score (1-5)	1.66
ater management:	STOR [kaf] =		DISTURB =	3.8	Score (1-5) Assess	
ssessment of NWM Pe		No regul ake Mendocino	lation, except for some	3.8 irrigation. not		1.66 Mediocre 2.67
	rformance: stimated flood peaks because L	No regul ake Mendocino	lation, except for some	3.8 irrigation. not	Assess	Mediocre
ssessment of NWM Pe WM simulation over-e flected. Large negative	rformance: stimated flood peaks because L e bias for overall water volume	No regul ake Mendocino indicates that r	lation, except for some	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre
ssessment of NWM Pe WM simulation over-e flected. Large negative	rformance: stimated flood peaks because L e bias for overall water volume	No regul ake Mendocine indicates that r	lation, except for some	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre
WM simulation over-e flected. Large negative b runoff.	rformance: stimated flood peaks because L e bias for overall water volume 11462500 RU	No regul ake Mendocine indicates that r	lation, except for some o reservoir operations r reservoir releases excer R HOPLAND CA (1/	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre
25000	rformance: stimated flood peaks because L e bias for overall water volume 11462500 RU	No regul ake Mendocine indicates that r	lation, except for some o reservoir operations r reservoir releases excer R HOPLAND CA (1/	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre
25000	rformance: stimated flood peaks because L e bias for overall water volume 11462500 RU	No regul ake Mendocine indicates that r	lation, except for some o reservoir operations r reservoir releases excer R HOPLAND CA (1/	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre
25000 20000 15000	rformance: stimated flood peaks because L e bias for overall water volume 11462500 RU	No regul ake Mendocine indicates that r	lation, except for some o reservoir operations r reservoir releases excer R HOPLAND CA (1/	3.8 irrigation. not ed Jan-	Assess HAT (1-3)	Mediocre



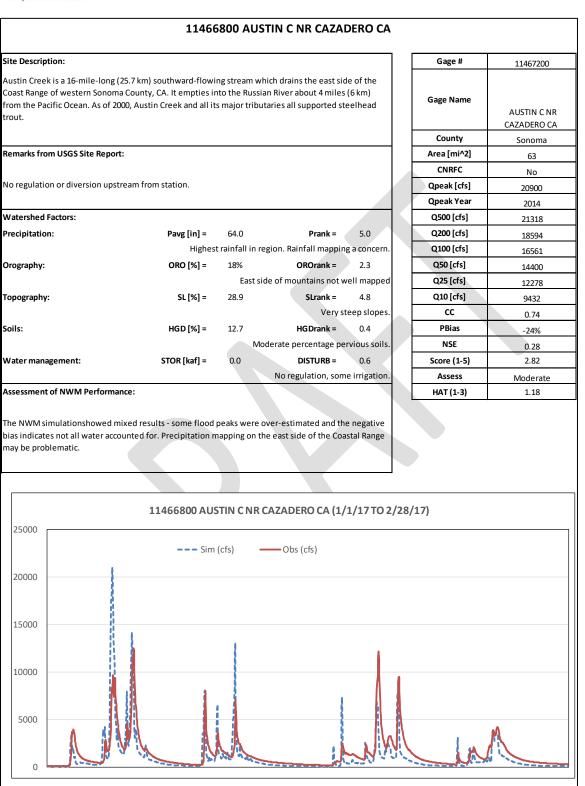
Located on the main stem Russian River, this gage serves as a reference for tracking flood and low Russian River, this gage serves as a reference for tracking flood and low Now sy water managers. River flows are influenced by operation of Lake Mendocino which captures Gage Name RUSSIAN R HEALDSBUR Name County Sond Remarks from USGS Site Report:	G CA oma 03 00 93 577 305
emarks from USGS Site Report: Area [mi^2] 79 low regulated by Lake Mendocino 63 mi upstream, beginning November 1958. Many diversions for rigation. Qpeak [cfs] 730 //atershed Factors: Q200 [cfs] 1657 recipitation: Pavg [in] = 45.6 Prank = 3.0 High rainfall on mountain east of Russian River valley. Q200 [cfs] 1465 rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. Q25 [cfs] 970 opography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Q100 [cfs] 1455 Jater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel HAT (1-3) 3.4	93 AC1 900 93 577 305
Iow regulated by Lake Mendocino 63 mi upstream, beginning November 1958. Many diversions for rigation. CNRFC HEA Vatershed Factors: Pavg [in] = 45.6 Prank = 3.0 Watershed Factors: High rainfall on mountain east of Russian River valley. Q200 [cfs] 1462 Vorgraphy: ORO [%] = 10% OROrank = 1.5 Vorgraphy: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Q250 [cfs] 1133 Oils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel HAT (1-3) 3.4	AC1 000 93 577 305
low regulated by Lake Mendocino 63 mi upstream, beginning November 1958. Many diversions for rigation. //atershed Factors: recipitation: Pavg [in] = 45.6 Prank = 3.0 High rainfall on mountain east of Russian River valley. rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. opography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. oils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. //ater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. ssessment of NWM Performance: n spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are	93 577 305
rigation. /atershed Factors: recipitation: Pavg [in] = 45.6 Prank = 3.0 High rainfall on mountain east of Russian River valley. rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. popography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. poils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. /ater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. ssessment of NWM Performance: I spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are	93 577 305
/atershed Factors: recipitation: Pavg [in] = 45.6 Prank = 3.0 High rainfall on mountain east of Russian River valley. Q200 [cfs] 1465 rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. Q250 [cfs] 1133 oppography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Q10 [cfs] 745 poils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. NSE 0.7 /ater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	577 305
Pavg [in] = 45.6 Prank = 3.0 High rainfall on mountain east of Russian River valley. Q200 [cfs] 1463 rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. Q25 [cfs] 970 oppography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Very steep slopes speed runoff. Q10 [cfs] 745 obils: HGD [%] = 29.8 HGDrank = 1.5 PBias -79 Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel HAT (1-3) 3.1 spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	305
High rainfall on mountain east of Russian River valley. rography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. Q50 [cfs] 1137 opography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Very steep slopes speed runoff. CC 0.9 oils: HGD [%] = 29.8 HGDrank = 1.5 PBias -77 Moderately pervious soils. NSE 0.7 spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are MAT (1-3) 3.1	
orography: ORO [%] = 10% OROrank = 1.5 Located near top of mountain; storng orography from below. Q25 [cfs] 970 opography: SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. Very steep slopes speed runoff. CC 0.9 oils: HGD [%] = 29.8 HGDrank = 1.5 PBias -77 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Score (1-5) 4.1 Peak flows regulated by Lake Mendocino. Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	526
Located near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Discrete d near top of mountain; storng orography from below. Moderately pervious soils. NSE NSE Moderately pervious soils. NSE Assess Excel HAT (1-3) Site of all the water management infl	_
SL [%] = 21.3 SLrank = 3.4 Very steep slopes speed runoff. CC 0.5 pils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are Hat (1-3) 3.1	
Very steep slopes speed runoff. CC 0.5 pils: HGD [%] = 29.8 HGDrank = 1.5 PBias -75 Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Score (1-5) 4.1 Peak flows regulated by Lake Mendocino. Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	
bils: HGD [%] = 29.8 HGDrank = 1.5 Moderately pervious soils. Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	17
Moderately pervious soils. NSE 0.7 Vater management: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. NSE 0.7 ssessment of NWM Performance: Store (1-5) 4.1 spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1) 1
Intermanagement: STOR [kaf] = 160.7 DISTURB = 3.1 Peak flows regulated by Lake Mendocino. Score (1-5) 4.1 Seessment of NWM Performance: Assess Excel spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	%
Peak flows regulated by Lake Mendocino. Assess Excel ssessment of NWM Performance: HAT (1-3) 3. spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.	
ssessment of NWM Performance: HAT (1-3) 3.1 spite of all the water management influences, the NWM gets high marks with statistics. But fluence of Lake Mendocino operations for flood control are evident as the observed peaks are HAT (1-3) 3.1	-
spite of all the water management influences, the NWM gets high marks with statistics. But Ifluence of Lake Mendocino operations for flood control are evident as the observed peaks are	lent
11464000 RUSSIAN R NR HEALDSBURG CA (1/1/17 TO 2/28/17)	
80000	
Sim (cfs) — Obs (cfs)	
70000 —————————————————————————————————	
60000	
50000	
40000	
40000	
30000	
20000	



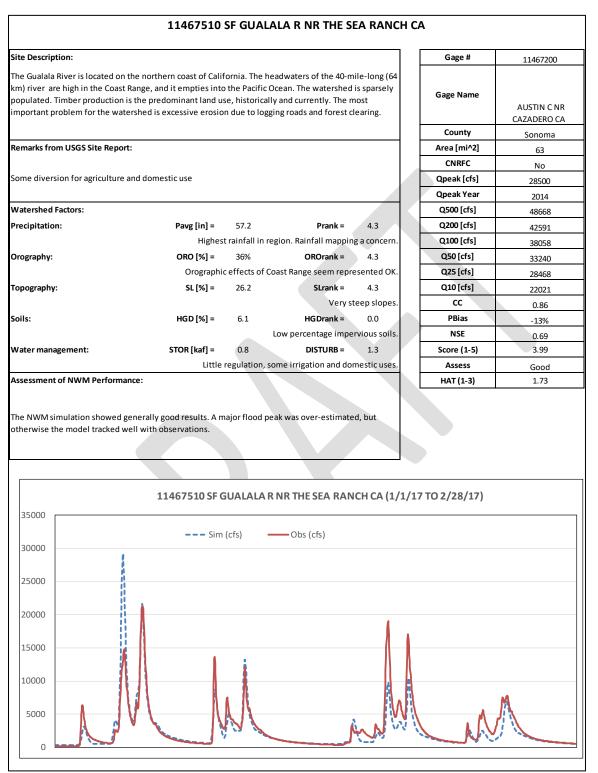
ite Description:				Gage #	11465660
Copeland Creek is a very small v hrough a suburbanized area of	-	st slope o	of Sonoma Mountain and then	Gage Name	COPELAND C A ROHNERT PARK CA
				County	Sonoma
Remarks from USGS Site Report	:			Area [mi^2]	6.23
				CNRFC	No
No regulation or diversion upstr	eam of station			Qpeak [cfs]	672
				Qpeak Year	2016
Watershed Factors:				Q500 [cfs]	2624
Precipitation:	Pavg [in] =	43.5	Prank = 2.7	Q200 [cfs]	2259
	Moderate rain	fall on m	nountain east of Russian River valley.	Q100 [cfs]	1988
Drography:	ORO [%] =	33%	OROrank = 3.5	Q50 [cfs]	1701
	Located on west slo	pe of mo	ountain; strong orographic influence.	Q25 [cfs]	1425
opography:	SL [%] =	10.0	SLrank = 1.3	Q10 [cfs]	1064
			Small drainage area with low slope.	сс	0.77
oils:	HGD [%] =	84.3	HGDrank = 5.0	PBias	-23%
		Ve	ery high percentage impervious soils.	NSE	0.56
					0150
Water management:	STOR [kaf] =		DISTURB = 2.1	Score (1-5)	3.42
Nater management:	STOR [kaf] =	0.0	DISTURB = 2.1	Score (1-5) Assess	3.42 Good
Assessment of NWM Performar For the assessment period the N lows. There seems under-predi tttributed to poor representation	nce: IWM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributic	0.0 rs, but con er-predic		Score (1-5) Assess HAT (1-3)	-
Assessment of NWM Performar For the assessment period the N lows. There seems under-predi	nce: IWM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributic	0.0 rs, but con er-predic	DISTURB = 2.1 No reservoir regulation.	Assess	Good
Assessment of NWM Performar For the assessment period the N lows. There seems under-predi tttributed to poor representation	nce: IWM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park.	0.0 rs, but col er-predic on and tig	DISTURB = 2.1 No reservoir regulation.	Assess HAT (1-3)	Good
Assessment of NWM Performar For the assessment period the N lows. There seems under-predi attributed to poor representatic uburban impervious areas of R	nce: IWM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park.	0.0 rs, but con er-predic on and tig	DISTURB = 2.1 No reservoir regulation.	Assess HAT (1-3)	Good
Assessment of NWM Performan for the assessment period the N lows. There seems under-predi tutributed to poor representation uburban impervious areas of Re 700	IVM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park. 11465660 COPELAN	0.0 rs, but con er-predic on and tig	DISTURB = 2.1 No reservoir regulation. Insistently under-predicted peak tition of abstractions. This may be ght soils. Also, storm runoff from the ROHNERT PARK CA (1/1/17 TO 2/2	Assess HAT (1-3)	Good
Assessment of NWM Performar For the assessment period the N lows. There seems under-predi titributed to poor representatic uburban impervious areas of R 700 600	IVM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park. 11465660 COPELAN	0.0 rs, but con er-predic on and tig	DISTURB = 2.1 No reservoir regulation. Insistently under-predicted peak tition of abstractions. This may be ght soils. Also, storm runoff from the ROHNERT PARK CA (1/1/17 TO 2/2	Assess HAT (1-3)	Good
Assessment of NWM Performan for the assessment period the N lows. There seems under-predi tutributed to poor representation uburban impervious areas of Re 700 600 500	IVM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park. 11465660 COPELAN	0.0 rs, but con er-predic on and tig	DISTURB = 2.1 No reservoir regulation. Insistently under-predicted peak tition of abstractions. This may be ght soils. Also, storm runoff from the ROHNERT PARK CA (1/1/17 TO 2/2	Assess HAT (1-3)	Good
Assessment of NWM Performan For the assessment period the N lows. There seems under-predi titributed to poor representation uburban impervious areas of R 700 600 500 400	IVM mimicked gaged flow iction of rainfall and/or ove on of rain spatial distributio ohnert Park. 11465660 COPELAN	0.0 rs, but con er-predic on and tig	DISTURB = 2.1 No reservoir regulation. Insistently under-predicted peak tition of abstractions. This may be ght soils. Also, storm runoff from the ROHNERT PARK CA (1/1/17 TO 2/2	Assess HAT (1-3)	Good

te Description:				Gage #	11466200
ountain and discharges to th hough it begins as a wild strea	e Laguna de Santa Rosa by am in the Mayacamas Mou	way of the Santa	California, which rises on Hood anta Rosa Flood Control Channel. Rosa Creek is culverted for part ws are diverted into Spring Lake.	Gage Name	SANTA ROSA C A SANTA ROSA CA
				County	Sonoma
emarks from USGS Site Repo	t:			Area [mi^2]	57.0
		<i>c</i>		CNRFC	No
ater is diverted into Spring L igation of about 5,000 acres.	ake, 5.9 mi upstream, durii	ng flood ever	nts. Diversions upstream for	Qpeak [cfs]	9080
igation of about 5,000 acres				Qpeak Year	1940
atershed Factors:				Q500 [cfs]	14635
ecipitation:	Pavg [in] =	42.4	Prank = 2.6	Q200 [cfs]	12555
	Modera	ate rainfall o	n east side of Russian River valley.	Q100 [cfs]	11017
rography:	ORO [%] =	33%	OROrank = 3.5	Q50 [cfs]	9394
	Located on west s	lope of mour	ntain; strong orographic influence.	Q25 [cfs]	7826
pography:	SL [%] =	15.8	SLrank = 2.4	Q10 [cfs]	5776
			Moderate slope	СС	0.90
oils:	HGD [%] =	63.5	HGDrank = 3.7	PBias	12%
			High percentage impervious soils.	NSE	0.69
ater management:	STOR [kaf] =	6.1	DISTURB = 3.1	Score (1-5)	4.03
		0.1	DI310KD - 3.1		
			sion of flood peaks to Spring Lake.	Assess	Excellent
ssessment of NWM Performa	or flood peaks with some o	Diver		Assess HAT (1-3)	Excellent 1.98
verall performance is good for ross skill metrics wirh low bi	or flood peaks with some o as and high NSE.	Diver- ver-estimati	sion of flood peaks to Spring Lake.	HAT (1-3)	
verall performance is good for ross skill metrics wirh low bi	or flood peaks with some o as and high NSE.	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well	HAT (1-3)	
verall performance is good for ross skill metrics wirh low bi	or flood peaks with some o as and high NSE. 11466200 SAN	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well C A SANTA ROSA CA (1/1/17	HAT (1-3)	
verall performance is good for ross skill metrics wirh low bi 7000 6000 5000	or flood peaks with some o as and high NSE. 11466200 SAN	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well C A SANTA ROSA CA (1/1/17	HAT (1-3)	
verall performance is good for ross skill metrics wirh low bi	or flood peaks with some o as and high NSE. 11466200 SAN	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well C A SANTA ROSA CA (1/1/17	HAT (1-3)	
verall performance is good for ross skill metrics wirh low bi 7000 6000 5000	or flood peaks with some o as and high NSE. 11466200 SAN	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well C A SANTA ROSA CA (1/1/17	HAT (1-3)	
seessment of NWM Performative and performance is good for ross skill metrics with low bit for the second se	or flood peaks with some o as and high NSE. 11466200 SAN	Diver- over-estimation	sion of flood peaks to Spring Lake. on, but the model does well C A SANTA ROSA CA (1/1/17	HAT (1-3)	

11466320 SANTA ROSA C A WILLOWSIDE RD NR SANTA ROSA CA Site Description: Gage # 11466320 Santa Rosa Creek is a 22-mile-long (35 km) stream in Sonoma County, California, which rises on Hood SANTA ROSA C A Mountain and discharges to the Laguna de Santa Rosa by way of the Santa Rosa Flood Control Channel. WILLOWSIDE RD NR Gage Name Though it begins as a wild stream in the Mayacamas Mountains, Santa Rosa Creek is culverted for part SANTA ROSA CA of its course through the city of Santa Rosa's downtown, and flood flows are diverted into Spring Lake. County Sonoma Area [mi^2] 77.6 Remarks from USGS Site Report: CNRFC No Water diverted into Spring Lake during floods Qpeak [cfs] 8100 **Qpeak Year** 2019 Watershed Factors: Q500 [cfs] 22270 Q200 [cfs] 19272 Precipitation: Pavg [in] = 40.4 Prank = 2.4 Q100 [cfs] Moderate rainfall on east side of Russian River valley. 17046 ORO [%] = OROrank = Q50 [cfs] 14687 Orography: 7% 1.2 Q25 [cfs] 12385 Located in valley, low orographc effect. Topography: SL [%] = 12.2 SLrank = 1.7 Q10 [cfs] 9332 Moderate slope сс 0.87 PBias Soils: HGD [%] = 55.1 HGDrank = 3.1 17% NSE Moderately high percentage impervious soils. 0.52 STOR [kaf] = 7.0 DISTURB = Score (1-5) 3.56 Water management: 3.8 Diversion of flood peaks to Spring Lake. Assess Good Assessment of NWM Performance: HAT (1-3) 1.74 The NWM simulation over-predicted flood peaks, perhaps due to diversions into Spring Lake. Overall performance is good for flood peaks with some over-estimation, but the model does well across skill metrics wirh low bias and high NSE. 11466320 SANTA ROSA CA WILLOWSIDE RD NR SANTA ROSA CA (1/1/17 TO 2/28/17) 12000 --- Sim (cfs) Obs (cfs) 10000 8000 6000 4000 2000 0



te Description:				Gage #	11466800
	e-long (48.1 km) stream that aters of Mark West Creek rea		ayacamas Mountains of River after a confluence with	Gage Name	MARK WEST CREEI NEAR MIRABEL HEIGHTS, CA
				County	Sonoma
emarks from USGS Site Rep	ort:			Area [mi^2]	251
				CNRFC	No
o regulation upstream of st	ation, some diversion for irri	igation of abou	t 11,000 acres.	Qpeak [cfs]	11300
				Qpeak Year	2005
atershed Factors:				Q500 [cfs]	56080
ecipitation:	Pavg [in] =	39.6	Prank = 2.3	Q200 [cfs]	48525
	Modera	ate rainfall on e	ast side of Russian River valley.	Q100 [cfs]	42931
rography:	ORO [%] =	0%	OROrank = 0.6	Q50 [cfs]	37006
		Located	in valley, low orographc effect.	Q25 [cfs]	31195
pography:	SL [%] =	9.2	SLrank = 1.1	Q10 [cfs]	23463
		Modera	te slope; drainds wetland area.	cc	0.75
ils:	HGD [%] =	52.1	HGDrank = 2.9	PBias	30%
				NSE	-1.99
		Moderately hig	gh percentage impervious soils.	INJL	-1.33
ater management:	STOR [kaf] =	Moderately hig 12.8	gh percentage impervious soils. DISTURB = 4.6	Score (1-5)	2.12
ater management:	STOR [kaf] =	12.8			2.12
e NWM simulation greatly neral. The poor performan	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks ce is perhaps due to inflows	12.8 ough Laguna d and compares p from the Lagu	DISTURB = 4.6 e Santa Rosa geatly attenuated. boorly to observed flows in na de Santa Rosa which drains a	Score (1-5)	
e NWM simulation greatly neral. The poor performan	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna	12.8 ough Laguna d and compares p from the Lagu	DISTURB = 4.6 e Santa Rosa geatly attenuated. boorly to observed flows in	Score (1-5) Assess	2.12 Mediocre
e NWM simulation greatly neral. The poor performar ge wetland area in the vall	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna	12.8 ough Laguna d and compares p from the Lagu	DISTURB = 4.6 e Santa Rosa geatly attenuated. boorly to observed flows in na de Santa Rosa which drains a	Score (1-5) Assess	2.12 Mediocre
e NWM simulation greatly neral. The poor performar ge wetland area in the vall	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna sent this influence.	12.8 ough Laguna d and compares f from the Lagu de Santa Rosa	DISTURB = 4.6 e Santa Rosa geatly attenuated. boorly to observed flows in na de Santa Rosa which drains a	Score (1-5) Assess HAT (1-3)	2.12 Mediocre 0.93
e NWM simulation greatly neral. The poor performar ge wetland area in the vall	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna sent this influence.	12.8 ough Laguna d and compares f from the Lagu de Santa Rosa	DISTURB = 4.6 e Santa Rosa geatly attenuated. boorly to observed flows in na de Santa Rosa which drains a wetland area are attenuated;	Score (1-5) Assess HAT (1-3)	2.12 Mediocre 0.93
25000	STOR [kaf] = Routed flows thr nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna sent this influence.	12.8 ough Laguna d and compares p from the Lagu de Santa Rosa rk West Cree	DISTURB = 4.6 e Santa Rosa geatly attenuated. Doorly to observed flows in na de Santa Rosa which drains a wetland area are attenuated; ek near Mirabel Heights, CA	Score (1-5) Assess HAT (1-3)	2.12 Mediocre 0.93
25000	STOR [kaf] = Routed flows thm nance: over-predicted flood peaks a ce is perhaps due to inflows ey. Inflows from the Laguna sent this influence. 11466800 Mar	12.8 ough Laguna d and compares p from the Lagu de Santa Rosa rk West Cree	DISTURB = 4.6 e Santa Rosa geatly attenuated. poorly to observed flows in na de Santa Rosa which drains a wetland area are attenuated; ek near Mirabel Heights, CA Obs (cfs)	Score (1-5) Assess HAT (1-3)	2.12 Mediocre 0.93



endocino counties in instem. The site is w endocino (~100 mi^2) marks from USGS Sit		ville gage i Is that occ	s the most downstream g	age on the	Gage # Gage Name	11467000
endocino counties in instem. The site is w endocino (~100 mi^2) marks from USGS Sit w regulated by Lake upstream.	Northern California. The Guerney ell known for the high flood leve and Lake Sonoma on Dry Creek (e Report:	ville gage i Is that occ	s the most downstream g	age on the	Gage Name	
w regulated by Lake upstream.						RUSSIAN R NR GUERNEVILLE CA
w regulated by Lake upstream.					County	Sonoma
upstream.					Area [mi^2]	1338
upstream.	Mendocino 77 mi upstream, begi	inning Nov	ember 1958 and by Lake	Sonoma 26	CNRFC	GUEC1
-	menuocino // mi upstream, begi	ining NO	competition, and by Lake	3011011112 20	Qpeak [cfs]	102000
atershed Factors:					Qpeak Year	1986
					Q500 [cfs]	168899
ecipitation:	Pavg [in] =	45.3	Prank =	2.9	Q200 [cfs]	147509
		Mode	ate rainfall over Russian F	River valley.	Q100 [cfs]	131641
ography:	ORO [%] =	-5%	OROrank =	0.2	Q50 [cfs]	114785
		Lo	cated in valley, low orogra	aphc effect.	Q25 [cfs]	98001
pography:	SL [%] =	18.8	SLrank =	2.9	Q10 [cfs]	75282
			Moderate to steep slope	es, variable.	cc	0.78
ils:	HGD [%] =	31.5	HGDrank =	1.6	PBias	-5%
			Moderate percentage per	rvious soils.	NSE	0.05
ater management:	STOR [kaf] =	624.0	DISTURB =	3.8	Score (1-5)	2.88
		Res	ervoirs and diversions a m	najor factor.	Assess	Moderate
sessment of NWM P	erformance:				HAT (1-3)	1.83
served flows.	11467000 RU	SSIAN R	NR GUERNEVILLE CA	(1/1/17 TO	2/28/17)	
120000	Sim	n (cfs)	Obs (cfs)			
80000				s (
60000						n
40000					1 print	

