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Conditioning Event Occurrence

At the Core of Event Attribution Science

In probability theory, the conditional probability of A given B is the
probability of A if B is known to occur (or have occurred).

Ps(A) = P(ANB)/P(B)




Conditional Risk

RS

WHOA!  WE SHOULD GET INSIDE!

X, ITS OKAY! LIGHTNING ONLY KILLS
. ABOUT 45 AMERICANS A YEAR, SO
THE CHANCES OF DYING ARE ONLY

ONE IN 7000000. LETS GO ON!

.)

THE ANNUAL DEATH RATE AMONG PEORLE
WHO KNOW THAT SYATISTIC 1S ONE IN SIX.



Land Surface Conditioning of Event Occurrence

Summer Hot Days Conditioned by Antecedent Rainfall
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Summer Mean Temperature Conditioned by Drought

Impact of Cumulative Drought
Texas JJA Temperature

0.6 1 Unconditione%l

Dry Oct—May/JJA

0.5 1

0.4 1
OBS

0.3 1

0.2 1

Probability Density Function

0.1 1

. _ N TR
-3 -2 -1 0 1 R 3 4

Degrees Celsius (°C)



Model Biases : Implications for Event Attribution
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SST Conditioning of Event Occurrence

Extreme Quintile Seasonal Temperature Conditioned by ENSO

Fig.12a: El Niiio vs. extreme springs in Texas
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Fig.12b: La Niiia vs. extreme springs in Texas
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Extreme Daily Rainfall Conditioned by ENSO

El Nino seasons vs. all seasons La Nina seasons vs. all seasons
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Fic. 3. Impact of (left) El Nifio and (right) La Nifa on the intensity of the largest I-day precipitation event
monthly in the November-April half of the year. Based on station data from the Global Historical Climatology
Network-Daily (GHCN-D) for 1949-2003. From Kenyon and Hegerl (2010).

Kenyon and Hegerl 2010, JClimate




CMIP5 Simulated and Observed Variance of DJF SST
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Atmospheric Blocking Conditioning of Event Occurrence

Number of Blocking Days During June—August

- TM-Index, 500mb Z, Fixed CBL
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Atmospheric Blocking Conditioning of Event Occurrence

Number of Blocking Days During June—August
55 TM-Index, 500mb Z, Fixed CBL
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Blocking and Extreme Heat Waves of Northern Europe

Year 2000 simulation
Northern Europe JJA mean temperatures
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Climatological Summer Blocking in CMIP5 Models

® Dependency on Blocking Index
° Sensitivity to Anthropogenic Climate Change

ERA40 Models MEAN

-0.2

250mb Z, Variable CBL (éee Pelly&Hoskins 2003)

Masato, Hoskins and Woolings 2012 -




Climate Change Conditioning of Event Occurrence

A Hypothesis for Record-breaking Temperatures in a Warming Climate
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Fig. 1: (Color online) Schematic of the evolution of the daily
temperature distribution under linear drift of the mean.

Wergen and Krug 2010, EPL



Characteristics of Daily Maximum Temperatures: 1975-2005

Normalized Distribution of
Daily Maximum Temperatures

Mean Daily Maximum Temperature

Mean St. Deviation of Daily Temp.
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Testing Hypothesis for Record-breaking Temperatures in a Warming Climate
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Fig. 4: (Color online) Mean record number at European
stations (1976-2005). Symbols show the average number of
upper (A) and lower (57) records observed since 1976 at a
given calendar year in the forward time analysis. The dotted
line shows the prediction for a stationary climate, and dashed
lines show the prediction for a constant rate of warming.




On the Reduced Variability of Daily Maximum Temperatures

TMAX Trend Daily TMAX Variability Trend
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Tools & Concepts for Assessing Event Conditioning
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Figure 3.1 Schematic illustration of the datasets and modeling strategies for performing attribution

US Climate Change Science Program : SAP 1.3 (2008)



Thank you

For further information go to :

http://www.esrl.noaa.gov/psd/csi/
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