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ABSTRACT

The record-setting 2011 Texas drought/heat wave is examined to identify physical
processes, underlying causes, and predictability. October 2010-September 2011
was Texas’s driest 12-month period on record. While the summer 2011 heat wave
magnitude (2.9°C above the 1981-2010 mean) was larger than the previous record,
events of similar or larger magnitude appear in pre-industrial control runs of
climate models. The principal factor contributing to the heat wave magnitude was a
severe rainfall deficit during antecedent and concurrent seasons related to
anomalous sea surface temperatures (SSTs) that included a La Nifia event. Virtually
all the precipitation deficits appear to be due to natural variability. About 0.6°C
warming relative to the 1981-2010 mean is estimated to be attributable to human-
induced climate change, with warming observed mainly in the past decade.
Quantitative attribution of the overall human-induced contribution since pre-
industrial times is complicated by the lack of a detected century-scale temperature

trend over Texas.

Multiple factors altered the probability of climate extremes over Texas in 2011.
Observed SST conditions increased the frequency of severe rainfall deficit events
from 9% to 34% relative to 1981-2010, while anthropogenic forcing did not
appreciably alter their frequency. Human-induced climate change increased the
probability of a new temperature record from 3% during the 1981-2010 reference

period to 6% in 2011, while the 2011 SSTs increased the probability from 4% to
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23%. Forecasts initialized in May 2011 demonstrate predictive skill in anticipating
much of the SST- enhanced risk for an extreme summer drought/heat wave over

Texas.
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1. Introduction

Drought and heat are no strangers to Texas. According to climate division data from
the National Climatic Data Center (NCDC; Guttman and Quayle, 1996), the average
summertime (June through August) temperature is higher in Texas than in any
other of the lower 48 states. Memorable Texas summertime heat waves include
1934 during the Dust Bowl, the 1980 central United States heat wave with 107 heat-
related deaths reported in Texas (Greenberg et al., 1983), and the more localized
Texas-Oklahoma heat wave in 1998 (Hong and Kalnay, 2002). The drought of 1948-
1957 is the drought of record across most of Texas, and the statewide Palmer
Drought Severity Index (PDSI) achieved a minimum of -7.80 in September 1956.
Other memorable droughts and their associated minimum PDSI values were in

1916-1918 (-7.09) and 1925 (-6.10).

And then came 2011. The three-month average for June through August was 30.4
°C, warmer than any previous single month. This was 2.9 °C above the long-term
average, nearly a factor of two larger than the previous record June-August
departure. The heat was accompanied by extreme drought: statewide precipitation
for October 2010 through September 2011 was 287 mm, a new record for driest
consecutive twelve months. The PDSI reached a new record minimum of -7.93 in
September 2011. Along with the drought and heat came record statewide
agricultural losses of $7.62 billion (Fannin, 2012). Wildfires burned 3,993,716
acres, almost double the previous highest value in twenty years of statewide

records, according to the Texas Forest Service. Commercial timber losses from the
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drought totaled $755 million, of which only 13% was due to wildfire (Texas Forest

Service, 2012).

This paper examines the climatological context for both the extreme precipitation
and temperature conditions occurring over Texas during 2011, it diagnoses the
physical processes contributing to both conditions including their interrelationship
and feedbacks, and it examines underlying causes with a principal purpose to
provide a predictive understanding (i.e., quantify the predictability). The paper
assesses how various contributing factors affected event occurrence, including its
timing and location, but especially its magnitude and probability for record
threshold exceedence, comparing the role of natural factors to those associated with
human-induced climate change. In addition to the analysis of observational data,
the paper diagnoses initialized coupled forecasts that were part of NOAA’s
operational seasonal forecasting activities, and uninitialized climate simulations of

the Coupled Model Intercomparison Project Phase 5 (CMIP5).

Several specific questions are considered in this study of the 2011 Texas drought
and heat wave. What processes, whether due to natural variability or
anthropogenic climate change, might have provided early warning? Were, for
instance, interannually-varying sea surface temperatures (SSTs) important, as for
the 1998 heat wave (e.g. Hong and Kalnay 2000), and to which the 1930s and 1950s
Central U.S. warm/dry epochs were also sensitive (Schubert et al. 20044a,b; Seager et

al. 2005; Hoerling et al. 2009)? Did soil moisture play an appreciable role in this
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event, given that the Great Plains is a region of known strong land surface feedbacks
on summertime air temperature and rainfall (e.g. Koster et al. 2004, Krakauer et al.
2010) and case studies provide evidence for appreciable soil moisture effects in
1980, 1998 and during the Dust Bowl (e.g. Hong and Kalnay 2002, Lyon and Dole
1995; Schubert et al. 2004a,b)? How did the antecedent deficits in precipitation,
which themselves were record setting, influence the subsequent summer Texas heat
wave intensity in light of global observational analyses indicating that hot summer
days are much more likely after the occurrence of precipitation deficits (Mueller and
Seneviratne 2012)? And, what aspects of the drought/heat wave were

manifestations of human-induced climate change?

Presented herein is a considerably broader assessment of the causes for the extreme
Texas conditions than would be entailed by an attribution of human-induced climate
change alone. Likewise, the study is concerned not just with how various factors,
including anthropogenic climate change, may have altered the probability of
exceeding a particular extreme threshold for rainfall and temperature over Texas in
2011, but also with explaining the full magnitude of the drought and heat wave

intensities.

Statistical analyses of the relationships between climate change and general classes
of events may provide some gross insights on the Texas drought/heat wave event,
but there are significant uncertainties. For instance, warm extremes have

increased more rapidly in recent decades compared to cold extremes over the
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United States as a whole (Meehl et al. 2009), and a recent synthesis report
expresses medium confidence that heat waves have lengthened and become more
frequent over many regions as a result of anthropogenic climate change (IPCC,
2012). Yet, no systematic changes in the annual and warm season mean daily
temperature have been detected over the Great Plains and Texas over the 62-year
period from 1948-2009 (Groisman et al. 2012) consistent with the notion of a
regional “warming hole” (e.g. Kunkel et al. 2006). Indeed, May-October maximum
temperatures over the region have decreased by 0.9°C (62 yr)-1 which is
statistically significant according to Groisman et al. The authors surmise that “It
may well be that the maximum temperature decrease was caused by wetter warm
seasons in the last decades rather than an opposite inference”. Their assessment of
an increase in regional summertime rainfall is consistent with results of a century-
scale analysis that also shows significant increases in precipitation (McRoberts and
Nielsen-Gammon 2011), and with the IPCC (2012) report on extremes that notes
droughts have become less frequent, less intense, and shorter in duration since

about 1950 over central North America.

[t is therefore evident that neither the 2011 record drought nor record heat wave
were consistent with recent regional trends over Texas, complicating the
quantification of overall human-induced climate change contribution. Thus, a
comprehensive event-specific diagnosis, including assessing its climatological
context in both a regional and global framework, is essential for a proper

understanding of this extreme event.
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The paper presents a quantitative analysis into the anatomy of the 2011 Texas heat
wave and drought, undertaken in the spirit of Namias’s (1982) dissection of the
1980 event. Section 2 describes the observational and numerical model data sets.
Section 3 probes into potential causes for the climate extremes including an
assessment of the range of extremes that could arise solely from natural variations
and a quantification of the likely roles of both natural and human influences on the
drought and heat wave. The paper contrasts the ability of uninitialized and
initialized climate models in simulating the extreme conditions over Texas during
summer 2011. A summary of results is presented in section 4 which includes a
discussion of the possible overall effects of climate change over the period spanning

pre-industrial times to the present.

2. Data and Methods

a. Observational data

Contiguous U.S. surface temperature and precipitation for 1895-2011 are derived
from NOAA’s monthly U.S. Climate Division data (NCDC 2002). Analyses of Texas
averaged conditions are constructed by averaging the 10 individual climate
divisions available for the state. Global monthly SST data is based on the 1° gridded
HadISST product (Rayner et al. 2003). For both datasets, seasonal departures are

calculated relative to a 1981-2010 reference.
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b. Climate model simulations

Four configurations of climate simulations are studied in order to determine
different aspects of the variability in Texas temperature and rainfall. One employs a
suite of CMIP5 global coupled ocean-atmosphere models in which external radiative
conditions are fixed to pre-industrial conditions. We analyze the results from 18
different models having integrations typically on the order of 500 years. A more
detailed analysis is conducted of a dataset consisting of 1500 years of simulations
based on the fourth version of the Community Climate System Model (CCSM4; Gent

et al. 2011). This and other model configurations are summarized in Table 1.

A second configuration employs a global atmospheric model in which SSTs, sea ice,
and carbon dioxide concentrations (but no other external forcings) are specified to
vary as observed during the period 1950-2010. This uses the atmospheric
component (GFS) of the second version of NOAA’s Climate Forecast System (CFSv2).
Further, in order to assess the statistical properties of the atmospheric response to
global SST/sea ice conditions during the period of the Texas heat wave, we examine
output from a third additional 80-member ensemble of GFS simulations spanning

the period October 2009 thru September 2011.

The fourth configuration is based on the externally forced CMIP5 simulations. We
analyze monthly output from 20 different models which were subjected to
variations in greenhouse gases, aerosols, solar irradiance, and the radiative effects
of volcanic activity for 1880-2005 (Taylor et al. 2012). Our analysis uses single runs

from each of the modeling centers.
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c¢. Climate model projections and predictions

Projections (uninitialized simulations) of climate conditions during the 2011 Texas
heat wave are based on CMIP5 models employing the Representative Concentration
Pathway 4.5 for individual greenhouse gases and aerosols (Moss et al. 2010). We
diagnose the CMIP model runs for an 11-year centered window (2006-2016) in
order to consider a large ensemble from which the model’s signal and the intensity
of natural internal variability in 2011 can be estimated. The forcing will be
subsequently referred to as “anthropogenic forcing” to denote the radiative driving
associated with the projected changes in anthropogenic GHGs and aerosols, and the

impacts for 2011 will be referred to as “human-induced” climate change.

Predictions (initialized forecasts) of climate conditions are analyzed using the first
(CFSv1; Saha et al. 2006) and second (CFSv2) generations of NOAAs climate forecast
system. Apart from differences in the resolution of the atmospheric and oceanic
component models between CFSv1 and CFSv21, another difference is that the CO>
conditions for the CFSv1 were held fixed at their 1988 values for all hindcasts and
real-time forecasts, while CFSv2 has a time-evolving CO2 concentration. For each
system, retrospective forecasts (hindcasts) provide a reference from which forecast
anomalies for 2011 are calculated. All predictions are for JJA seasonal means based
on initialization from May conditions. Table 1 provides details on the hindcast and

forecast procedures.

L The atmospheric component of CFS, the Global Forecast System (GFS) uses a spectral
truncation of 62 and 126 waves in version 1 and 2 respectively.

10
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249  projections and predictions are interpolated to the 344 NCDC U.S. Climate Division
250  centroids using a simple linear inverse distance technique to facilitate comparison
251  with the observations. Texas averages are calculated as the area-weight of the 10
252  climate divisions defining the state. Unless stated otherwise, all model and

253  observed anomalies for 2011 conditions are calculated relative to a 1981-2010

254  reference climatology. There are several reasons for using this 30-year period.
255  First, the various model and observed data sets have as their common period of
256  evaluation 1981-2010, thus making this the only period for meaningful

257  intercomparison. Second, it is standard practice in climate monitoring to use a 30
258  year period as it is long enough to filter out interannual variations, but also short
259  enough to be able to respond to longer climatic trends. Finally, operational

260  practices of seasonal forecasting involve articulating anomalies relative to the most
261 recent 30-year average. An assessment of observed overall climate trends spanning
262  thelonger period of historical data is also presented, and section 4 further discusses
263  estimates of the overall anthropogenic climate change signal in which the period of
264 reference for estimating CMIP5 model simulations for 2011 is the models’ pre-

265  industrial climate.
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3. Results

The 2011 heat wave was centered over Texas and Oklahoma (Fig. 1, top), and
included western portions of Louisiana and Arkansas, southern Kansas, and eastern
New Mexico. The Texas summer temperature of 30.4°C in 2011 was an outlier with
respect to conditions during 1895-1954 that included the Dust Bowl era and the
sustained late 1940s/early 1950s drought period. It was also an outlier relative to
the recent epoch of 1955-2010 that includes the era of rapidly increasing
atmospheric greenhouse gas concentrations as indicated in the probability
distribution functions (PDFs) of summertime temperature (Fig. 1, bottom right).
The similarity in statistical properties of Texas summer temperatures between
1895-1954 and 1955-2010 is consistent with the lack of an appreciable
summertime warming trend over the Southern Plains since the beginning of the 20t
Century (e.g. Kunkel et al. 2006; Fig 1, bottom left). The extreme magnitude of the
2011 event thus would not have been anticipated from any appreciable century-
scale trend in the historical time series of Texas summer mean temperatures or
their variability, similar to the situation that occurred in relation to the 2010
Russian summer heat wave (Dole et al. 2011). Likewise, the severe deficits in
precipitation during 2011 would not have been anticipated from century-scale
trends, which were actually toward wetter conditions (McRoberts and Nielsen-

Gammon 2011).

12
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a. The role of randomness

We address the question whether an event as extreme as occurred in 2011 might
have been anticipated (at least in a statistical sense) if a longer-term record were
available. In such a case, relying on a limited observational data record could result
in significantly underestimating the probability of an extreme heat wave or, put
another way, overestimating how rare such events would be. This is precisely the

recipe for a "climate surprise”.

We test this possibility by calculating the statistics of 100-year block maxima for
Texas summertime temperatures occurring in the pre-industrial simulations of
CMIP5. Figure 2 shows the histogram (gray bars) of the 115 hottest summers
occurring in consecutive, non-overlapping 100-year samples. There is substantial
variability in the magnitude of 1 in 100 year summer warm extremes in these
simulations, ranging from a low value of +1.2°C departure to a high value of +4°C
departure. The observed 2011 event is thus seen to fall well within this
distribution, which also brackets the values for the observed 1895-2010 prior
record. The fact that 2011 had a heat wave magnitude much greater than occurring
in the prior 116-yr observational record could thus be reconciled, at least in part,
with the inadequacy of observational data and sampling noise. There are
uncertainties, however, in the CMIP5 estimates of such extreme Texas heat wave
magnitudes stemming in part from the fact that individual models have interannual
variability of Texas summer temperatures that is appreciably greater than and also

some that is appreciably less than observed. The histogram should therefore not be

13
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viewed as having been drawn from a homogeneous population. Several individual
models having long integrations (on order of 1000 yrs) also yield spreads in their
100-yr block maxima heat waves analogous to that shown for the entire multi-
model distribution. In particular, a 1500-yr long simulation of CCSM4 was analyzed
separately, in part because of the excellent model representation of climatological
mean summer Texas temperatures (27.8°C compared to 27.4°C observed) and the
realism of its interannual variability (standard deviation of 0.8°C compared to 0.7°C
observed). The range among the 15 samples of CCSM4 block maxima heat waves

was +1.5°C to +3°C, consistent with the multi-model spread.

The range of 100-yr block maxima extreme event magnitudes is almost certainly
greater than indicated by the histogram alone, the latter having been drawn from a
finite sample of the models’ population. Figure 2 addresses this further by
superposing upon the histogram two probability distribution functions, one is a
fitted Gaussian (red curve), and the other is a non-parametric fit. It is evident that
the Gaussian curve is not a particularly good fit to these extreme values, consistent
with expectations from Generalized Extreme Value theory, though again the fact that
the data are not drawn from a homogeneous population sample must be recognized
also. Whether based on the histogram or the curve fits, the results in Fig. 2 suggest
that natural variability alone appears capable of producing heat wave magnitudes as

large (or larger) than observed in 2011.

To have illustrated, based on CMIP5 simulations, that natural variability appears

capable of producing extreme heat waves as large as or larger than observed in

14
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2011 is of course not the same as stating that natural variability accounts for the
total observed magnitude of this particular event. This does, however, confirm that
the observed 116-year record is insufficient to delineate the extremes of natural

variability.

The extreme heat waves in the CMIP5 simulations, though statistically random
events, were accompanied by a coherent pattern of global SST evolution. To
illustrate the evolution of such a pattern, we use the very large sample of CCSM4
runs. In addition to the attributes of having a realistic Texas region climatology,
this model is also suitable for analysis because of the realistic pattern of tropical SST
variability (Gent et al. 2011), to which Texas climate is well-known to be sensitive.
Figure 3 (top panels) shows the composite global SST and U.S. precipitation
anomalies that were coincident with the summertime occurrences of the 1 in 100
year heat wave events. Extreme Southern Plains dryness is seen to accompany these
heat waves, as was noted also in 2011 and during past Texas heat waves. Dryness
is also noted in the model over the Pacific Northwest, though these departures,
shown as standardized anomalies, are small in an absolute sense because they occur
during that region’s climatological dry season. The ]JJA SST anomalies in the tropical
equatorial Pacific are not particularly extreme, though they are part of a pattern
typical of the waning phases of La Nifa events, including cool tropical /subtropical
SSTs in most basins, and a distinctive North Pacific SST anomaly pattern.
Antecedent October-May SST composite conditions for these heat wave events

illustrates a mature La Nifia structure (Fig. 3, bottom left), and a similar La Nifia
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pattern occurs in several other CMIP5 models that were examined (not shown).
Likewise, the antecedent U.S. precipitation anomaly pattern (Fig. 3, bottom right)
shows dryness over Texas and the Gulf Coast region, a feature that is consistent with
known global climate anomalies associated with La Nifia (e.g. Kiladis and Diaz
1989). A similar evolution of cold Pacific SSTs accompanied the 2011 Texas heat
wave, and the combination of antecedent and contemporaneous dryness were
likewise particular features of the 2011 Texas heat wave. It should be noted that
the tropical Atlantic SSTs in the CCSM4 heat wave composite for pre-industrial runs
are cold, which is opposite to the warm conditions occurring during the 2011 heat

wave, as discussed further in the next section.

b. The role of forcing

Suites of climate simulations are diagnosed to address how anthropogenic forcing,
SST forcing, and soil moisture forcings contributed to the 2011 extreme event. It
should be noted that SST and soil moisture conditions in 2011 likely possess some
anthropogenic component, aspects of which are discussed further below. Figure 4
illustrates the observed pattern of global SST anomalies for summer 2011 (top, left),
and for the preceding seasons (bottom, left). The pattern of SST anomalies are
similar to known patterns of natural coupled ocean-atmosphere variability. For
instance, the antecedent conditions consisted of tropical Pacific cold SSTs with peak
anomalies of -1.5°C, a horseshoe pattern of warm anomalies stretching poleward
from the equatorial west Pacific, and cold anomalies extending along the west coasts

of North and South America that are characteristic of a mature La Nifia event. The
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tropical SST anomalies weakened considerably by summer as La Nifia waned. On
the other hand, warm SST anomalies exceeding +0.5°C that covered the tropical
Atlantic Ocean throughout this period were atypical of La Nifia. The 2011 warmth of
the tropical Atlantic Ocean was more likely related to a combination of lower
frequency behavior that may have included natural multi-decadal Atlantic

variability and an externally forced global warming trend (Ting et al. 2009).

While no explicit experiments are conducted in this study that constrain evolution
of soil moisture, cumulative precipitation serves as a proxy indicator for soil
moisture. The U.S. summer 2011 precipitation departures (Fig. 4, right top) and the
antecedent deficits accumulated during the prior eight months of the water year
(Fig. 4, right bottom) were less than 50% of normal, each breaking records for their
driest periods since 1895. These dry conditions are contrary to observed long-term
trends in the region which consist of decreased dryness, droughts becoming less

frequent, less intense, and shorter in duration (IPCC 2012).

[t is not surprising that the hottest summer coincided with the driest summer over
Texas in 2011 given the well-known inverse correlation between temperature and
precipitation over this region (e.g. Madden and Williams 1978) and various other
evidence for strong soil moisture feedbacks on summer climate (e.g. Senevirante et
al. 2006; Fischer and Schar 2010; Hirschi et al. 2011). Yet, the extreme magnitude of
the heat wave cannot be reconciled with the extreme summer dryness alone, at least

not in a linear sense. Despite the strong inverse relation between Texas summer
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rainfall and temperature (Fig. 5), a prediction based on this historical data fails to
anticipate the extreme magnitude of the summer temperature when accounting for
the extreme coincident precipitation deficit. This is indicated by the large
displacement between the JJA 2011 observed conditions and the linear fit, even

giving reasonable consideration for the scatter about the linear relation.

There is reason to posit that the relation between temperature and precipitation
may be a nonlinear function of the soil moisture deficit, for instance as found during
summer over southeastern Europe (Hirschi etal. 2011). Also, analyses of historical
Texas temperature and precipitation data by Mueller and Senevirante (2012) find
an asymmetrical impact of antecedent drying on the probability of hot summer
days, with the hot tail of the temperature distribution more affected by
precipitation/soil moisture deficits. Furthermore, aside from the predictive
component of temperatures related to antecedent soil moisture impacts, there is

also a potential impact of human-induced warming over Texas in 2011.

Figure 6 compares the June-August 2011 observed contiguous U.S. precipitation and
surface temperature anomaly patterns (top) with the ensemble mean anomalies
from the AMIP (middle) and CMIP5 (bottom) simulations (relative to 1981-2010).
The forced response to the actual SST conditions capture several of the principal
regional features of the 2011 climate conditions. The AMIP simulations indicate, in
particular, that the pattern of above normal temperature and below normal rainfall

focused on the Texas area was part of a regional sensitivity to that year’s SST
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conditions. Cold tropical Pacific SSTs were likely an important factor in causing
southern Plains dryness as affirmed in model experiments that have assessed U.S.
climate sensitivity to separate ocean basin forcing (e.g. Schubert et al. 2009).
Likewise, climate experiments studied by Findell and Delworth (2010) reveal that
warm tropical Atlantic SSTs also contribute to southern Plains drying, though that

sensitivity is weaker than the influence of tropical Pacific SSTs.

In contrast, no such regional specificity emerges in response to the anthropogenic

forcing alone. The CMIP5 simulations indicate a mostly uniform surface warming

response that spans the entire contiguous U.S., indicating that the Texas region was

not particularly susceptible (relative to adjacent regions) to the change in

anthropogenic forcing. Further, there is no material sensitivity of summer mean

precipitation to the anthropogenic forcing over the U.S. as a whole for 2011. Nor do

the CMIP5 simulations indicate appreciable sensitivity of antecedent winter and

spring precipitation over the U.S. (not shown).

The AMIP forced experiments suggest that a +1.1°C warm signal existed during
summer over Texas as a consequence of the particular global ocean conditions in
2011, which implies approximately 40% of the magnitude of the Texas heat wave
(+2.9°C) might have been anticipated as a mean response to forcing related to the
specific ocean conditions. The CMIP forced experiments further suggest that a
+0.6°C warm signal existed during summer over Texas as a consequence of the

projected anthropogenic GHG and aerosol conditions in 2011, which implies that
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relative to 1981-2010 about 20% of the magnitude of the Texas heat wave might
have been attributable to such forcings. The characteristcs of these PDFs are
summarized in Tables 2 and 3, and discussed further in section 3d. Suffice it to state
here that the forcing associated with observed SSTs greatly increased the
probability for an extreme dry and hot summer over Texas in 2011, considerably

more so than did anthropogenic forcing.

To what extent can the seasonal responses in the AMIP and CMIP simulation suites
be interepreted as representing separate and independent forcing effects? While
much of the pattern of ocean conditions in 2011 was consistent with natural
internal variability, some fraction of the anomaly patterns likely also included a
climate change component, and as such the AMIP responses are not necessarily
signatures of internal ocean variability alone. Regarding rainfall, however, the
results do lend themselves to an interpretaton of seperate physical forcing factors.
In particular, the AMIP simulated drying over the Texas region is likely due to
natural SST forcing alone insofar as the CMIP simulations do not yield a discernible
precipitation response. This is consistent with the results of other modeling studies
that find the global SST trends produce only weak precipitation responses over the
continental U.S. (Schubert et al. 2009). Regarding temperature, the AMIP simulated
warming over the Texas region likely includes a human-induced component via
anthropogenic forcing of SSTs, however, the majority of the AMIP simulated warmth
resulted from the aforementioned drying signal and the physical relationship

between precipitaiton deficits and hot summers (e.g. Mueller and Senevirante 2012)
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The Texas warming in the CMIP simulations is partly due to the direct effect of

changed radiative forcing on the region’s temperature (a factor not included in the
AMIP simulation for 2011), and an indirect effect related to human-induced ocean
warming (Hoerling et al. 2006, 2008; Dommenget 2009; Compo and Sardeshmukh

2009).

How robust are the signals derived from this particular suite of model simulations?
The structural uncertainty in each signal that would arise from model biases cannot
be determined from the present suite of model runs. In particular, additional
experiments employing different atmospheric models also run in AMIP mode would
need to be analyzed to assess the uncertainty in SST/sea ice signals. Likewise,
ensembles of each of the 20 CMIP5 models would be required to estimate the
uncertainty in the human-induced climate change response. The current study
provides a single indication of the probable human-induced signal in 2011 climate
conditions, derived by ensemble averaging single runs of each CMIP model.
Additional analyses described further below, however, suggest that this CMIP5
ensemble mean signal is a reasonable estimate of the anthropogenic forcing of Texas

summertime temperatures, at least for 2011 relative to 1981-2010.

Aside from estimating the mean value of the forced response, it is also important to
diagnose the variability about that mean and thereby assess how deterministic the
2011 Texas extreme event was with respect to forcing. Was the observed
occurrence of an extreme heat wave and drought the only outcome possible over

Texas in 2011 for the particular conditions of boundary and external forcings? Was
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it the most likely outcome? Could the JJA 2011 conditions have been even more
severe? To address such questions, Fig. 7 shows the frequency distributions of the
simulations of JJA 2011 and of the reference period 1981-2010 for AMIP (top) and
CMIP5 (bottom). The considerable spread evident in each of the probability
distribution functions (PDFs) reveals the appreciable role of random variability in
Texas summer climate. For instance, consider the PDFs for 2011 based on the AMIP
simulations. Because each of the 80 members was identically forced, the spread of
the distributions is entirely due to internal atmospheric noise. Thus, while the odds
of a cold summer were much reduced in 2011 compared to 1981-2010, three of the
model simulations did produce colder than normal summer conditions over Texas
in 2011. The CMIP5 spread for 2011 simulations is greater than the AMIP spread in
part because the latter is constrained by a single particular SST conditions, but also
because the former has overall greater summertime temperature variability (see
Table 3), and an even larger fraction of CMIP5 runs yielded cold summer conditions
over Texas in 2011. The important indication offered by these PDFs is that a wide
range of possible climate outcomes for Texas in 2011 would have been consistent
with, and thus possible under, the influences of forcings. In particular, the observed
extreme hot temperature and drought conditions were not the most probable
outcomes in 2011, even though the probability of such extremes was greatly
increased owing especially to the SST conditions of 2011 (see section 3d). These
results once again suggest the important role played by random internal variability,

consistent with our analysis of the pre-industrial climate simulations.
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c¢. Physical process understanding

Here we examine the relationship between Texas summertime temperature and
precipitation variability in the context of how their linkages may have been sensitive
to the influence of the specific 2011 SST and GHG forcings. Diagnosis of AMIP and
CMIP models is conducted to specifically test whether precipitation deficits
amplified the hot tails of the summertime temperature distribution. An
intercomparison of these forced experiments will also address how the observed
record-breaking heat wave arose from physical processes tied to naturally varying
ocean conditions versus those tied to increased greenhouse gase and aerosol
concentrations. Regarding effects of the latter forcings, the question of detection of a
human-induced climate change over Texas is also explored, despite the absence of a

century-long warming (or drying) over Texas noted in the prior section.

Figure 8 presents the scatter relationship between Texas summer temperature and
rainfall in AMIP (top) and CMIP (bottom) simulations for both the 1981-2010
reference period (left) and the actual forcing conditions of 2011 (right). A strong
negative correlation between temperature and rainfall, with a magnitude quite
similar to that found in observations, occurs in all the simulation suites. Having the
advantage of a large sample of model realizations (720 for CMIP; 360 for AMIP), one
can discern nonlinearity in the temperature/rainfall relationship occurring at the
tails of the distribution. This is characterized by a larger sensitivity of Texas
summertime temperature per incremental precipitation change for dry conditions

compared to wet conditions. We also note that the CMIP5 samples include several
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heat wave occurrences larger in magnitude than the 2011 event during 1981-2010,
consistent with the appreciably greater variance in surface temperature in CMIP5

models than is observed (see Table 2).

It is plausible therefore that amplification of the hot tails of the summertime
temperature distribution was an important physical process associated with the
extreme 2011 Texas event. Additional evidence to this effect is seen in the scatter
relationships for the model simulations of summer 2011. Note in particular that
virtually all AMIP realizations were warm and dry (Fig. 8, top right). A small cluster
of AMIP realizations produced summertime temperature departures near the
observed heat wave magnitude, and these realizations were also among the driest.
By contrast, the 2011 CMIP5 scatter is characterized by a shift in only the
temperature probability relative to its 1981-2010 population. However, one again
sees a few individual members as hot as observed, and these are also among the
driest CMIP realizations. Severe drought thus appears to be a necessary ingredient
for occurrences of Texas summertime extreme heat. While the SST forcing of 2011
increased the probability for below normal precipitation, it is important to
recognize also the substantial random component of the summertime conditions
over Texas as revealed by the PDF spreads in Fig. 7 and the scatter plot in Fig. 8.
This is quantified in Table 2 which indicates that the AMIP mean drying signal of -
34% was equivalent to only one standardized departure of the model’s overall

interannual variability.
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We also find that SST forcing exerted an even greater effect on antecedent moisture
conditions. Texas cumulative precipitation departures from October 2010 thru
August 2011 (Fig. 9) are plotted for the 80-member averaged AMIP data (thick black
line) and for observations (thick red line). About 80% of the magnitude of observed
deficits accumulated during fall and winter can be explained by an SST-forced signal.
Such antecedent dry conditions likely contributed significantly to the ensuing
summer heat wave intensity, and perhaps also to the summer rainfall deficits
themselves, as illustrated from further analysis of the very large ensemble of
historical AMIP data. Shown in Fig. 10 is the model’s Texas summer rainfall and
precipitation sensitivity to October-May antecedent precipitation based on data
from the 1950-2010 AMIP simulations, and a scatter plot is constructed from the
10% (72 sample) driest antecedents (red dots) and the 10% (72 sample) wettest
antecedents. These simulations suggest several indications for land surface
feedbacks, which may have contributed to the observed extreme summer
conditions, though other factors (e.g. the SST evolution) could also have contributed.
First, there is nearly a +2°C difference in the mean summer temperature between
the dry versus the wet antecedent ensemble means. Also, the majority of dry (wet)
antecedent cases experienced dry (wet) summers. And finally, there is a greater
sensitivity of summer temperature to incremental rainfall departures in the
environment of prior cumulative low moisture conditions compared to prior
cumulative wet conditions, consistent with the nonlinearity seen in the
temperature/precipitation scatter plots of Fig. 8. Recalling that the observed

October-May 2011 Texas precipitation deficits were the most severe in the
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historical record, these results imply that the probability for a record-breaking
summer heat wave in 2011 (and also a further reduction in rainfall during summer)
was strongly elevated by the antecedent drought as implied also by the empirical

analysis of Mueller and Senevirante (2012).

We present two additional analyses that illustrate the significance of antecedent
drought conditions of October — August 2011 on the subsequent summer
temperature extremes. One is of the precipitation behavior in the subset of 2011
AMIP simulations that, by chance, produced the hot summer extremes in Texas
having magnitudes close to the observed heat wave intensity. The precipitation
evolution in these 8 runs (the 10% hottest) is indicated by orange lines in Fig. 9. It
is apparent that all but one of the hottest realizations also experienced the most
severe cumulative drought conditions for both antecedent and coincident periods,
and that among all 80-members their particular rainfall traces were most similar to
observations. A second analysis evaluates the Texas summertime temperature
signal associated with such a particular condition --- both antecedent and coincident
summer dryness--- but extracted from the much larger suite of historical AMIP runs.
Shown in Fig. 11, this estimated “drought-induced temperature signal” is about
+2°C, and the shift of the distribution relative to summertime temperatures

unconditioned by precipitation is visibly apparent.

Finally, we consider the evidence for a human contribution to the 2011 Texas

summer heat wave magnitude. The probability of hot summers has increased over
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many land areas as a result of a human contribution to mean warming over the last
century (e.g. Jones et al. 2008). But the southern Plains, sometimes referred to as a
“warming hole” region, has been a noteworthy exception where no long-term
warming has been observed (e.g., Kunkel et al. 2006; Knutson et al. 2006; Groisman
et al. 2012), with such processes as natural variability (e.g., Wang et al. 2009),
anthropogenic aerosols (e.g. Leibensperger et al. 2012), and land use change (e.g.
Lawrence et al. 2011) being among various possible factors. One might thus argue
that it is premature to attribute any fraction (large or small) of the heat wave
intensity to effects of anthropogenic forcing in 2011, when in fact no long-term
warming has been detected. Of course, to the extent that the lack of warming may
be due to masking by strong natural variability rather than due to a lack of any
climate change signal (e.g. Kunkel et al. 2006), then estimates of such signals via
independent data (e.g, CMIP5 simulations) is valid. Some studies argue, however,
that because of model biases, simulated regional climate responses to
anthropogenic forcing may be unreliable over the Great Plains in summer (e.g., Pan
et al. 2004). Also, long term regional climate trends are sensitive to the patterns of
SST change (e.g., Hoerling et al. 2010; 2012), and as such, biases in CMIP SST
responses could likewise contribute to differences between observed and CMIP

simulated regional climate anomalies (Shin and Sardeshmukh 2011).

Yet, while acknowledging the validity of these various concerns, analysis of the time-
evolving summertime surface temperature trends over Texas based on various data

sets (Fig. 12) suggests that our initial estimate of a roughly +0.6°C human-induced
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warming contribution to 2011 conditions (relative to a 1981-2010 reference) based
on CMIP5 data alone is reasonable. The dark box-whisker plots show the median
trend value and the spread among the 20 CMIP5 models for periods as long as 110-
yrs (left) and as short as 30-yrs (right), all periods ending in 2010. Green circles
denote the observed trends. Warming is observed to emerge in recent decades, and
this observed behavior is consistent with an accelerated warming trend found also
in the CMIP5 simulations. This is further consistent with an accelerated
summertime Texas warming trend in recent decades occurring in the AMIP
simulations, shown in the light box-whisker plots based on the 12-member GFS
historical runs. These various lines of evidence support a view that the region’s
summertime temperatures have been warming over the last 30 to 40 year period, in
a manner that appears to be consistent both in timing and in magnitude with

anthropogenic forcing.

No long-term warming has been observed during summer over Texas for periods of
analysis greater than about 50-years, however. Furthermore, there is little
consistency between the observed and CMIP5 trends over these longer time scales,
with the observed trends often residing outside the range of the 20-model CMIP5
simulations. The true anthropogenic warming signal during summer over Texas
that spans the entire 20t Century is thus highly uncertain given the appreciable
differences between model and observations, and further research is required to

understand the reasons for these discrepancies.
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Some have proposed using observational trends calculated only since the 1980s to
infer the true human-induced warming rate, with the argument being that the
recent decades exhibit the most intense anthropogenic forcing (e.g., Rahmstorf and
Coumou 2011). But such an approach risks conflating the true external signal of
climate change with natural coupled ocean-atmosphere variability. In the case of
Texas, if one were to embrace the observed trend value during 1981-2010 period as
an estimate of the human-induced warming, for instance, then the inferred warming
would be only half the magnitude of the CMIP5 ensemble mean signal. This could be
justified if indeed the trends were strongly deterministic in their relationship with
radiative forcing. In such a scenario, the spread among the CMIP5 model trends
would be an indication of different model sensitivities (implying biases) to the
forcing, while the observed trend would be the true signal of change. However,
analysis of trends based on the AMIP realizations indicates that much of the spread
in trends, post-1950, is actually due to random variability (see Fig. 12). Since each
run of this AMIP ensemble is forced identically by the observed SST, sea ice, and CO>
variability, and utilizes the same model, the range of trends is solely due to
atmospheric noise. Given that the amplitude of this range approximates the range
among the 20 CMIP model trends, the latter is thus likely also mainly due to noise,
rather than being an expression of different plausible sensitivities to anthropogenic
forcing and biases. There is no reason, therefore, to assume that a single observed
regional trend is also not a combination of a true signal and an appreciable noise

component (e.g. Deser et al. 2012).
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Based on the data sets available in this study, the only reliable estimate of the signal
due to external forcing is the ensemble mean of all models, rather than any single
model run or the observed trend. In this regard, it is important that the CMIP5 and
AMIP median Texas warming trends are virtually identical for the 1981-2010
period. Given that the AMIP suite was forced with the actual SSTs, the agreement
with CMIP5 implies that aforementioned CMIP model biases in SST simulations
were either random across individual models and thus minimized via ensemble
averaging, or that the Texas summertime temperature sensitivity to such biases is
low. It cannot be discounted entirely that the agreement is in part fortuitous, and
that CMIP5 systematic errors in sensitivity to external forcing have opposed the
effects of natural oceanic variability. Nonetheless, the agreement of CMIP and AMIP
median trends may provide an independent and consistent estimate for the
probable magnitude of the human-induced mean warming of Texas summer

temperatures.

d. Event Probability

How did various factors operating in 2011 alter the probability of breaking the prior
Texas heat wave record? In their diagnosis of the 2003 western European heat
wave, Stott et al. (2004) developed a procedure for estimating how human-induced
climate change affected the probability of a record event. Here we employ similar
methods but broaden the scope to reveal not only how anthropogenic forcing
affected event probability, but also how the particular state of 2011 global SSTs

affected event probabilities. As in Stott et al. (2004 ), we attempt to avoid selection
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bias by examining the threshold corresponding to the prior observed Texas heat
wave magnitude (+1.6°C), rather than the particular 2011 event magnitude
(+2.9°C). A threshold of +1.6°C corresponds to about a 2 standard deviation
departure (2-sigma) in observations, and is thus also more amenable to sampling
using the ensemble sizes that are available to this study. For precipitation we select
a threshold of -50% departure, for which there had been 4 prior summertime event
occurrences at least as dry in the 1895-2010 observational record (Fig. 5), though

this threshold is considerably less than the -70% departure during summer 2011.

The results for precipitation are summarized in Table 2 which suggest a vastly
different effect of anthropogenic greenhouse gas forcing versus the 2011 SST
forcing on the likelihood of extreme drought. The CMIP5 projections indicate no
material change in the dry event probability relative to 1981-2010. The AMIP
simulations indicate a near 4-fold increase in event threshold exceedence, with an
expected return time of 11 years during 1981-2011 becoming only about 3 years
under the influence of 2011 SST states. We interpret this result as revealing mainly
the strong La Nifa effect on the southern Plains rainfall identified in numerous
previous observational and modeling studies. The apparent lack of a dry tail
sensitivity in CMIP5 projections appears consistent with an overall lack of a mean
rainfall change. Itis interesting to note, however, that the CMIP5 projections
suggest an increase in the probability of extreme wet summer seasons during 2011
(see Fig. 7). In contrast, the 2011 SST patterns severely reduce the probability of an

extreme wet Texas summer, while simultaneously enhancing the probability of
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severe drought.

Table 3 shows how the probability of exceeding a 2-sigma heat wave threshold had
changed in 2011. The absolute value of the threshold varies somewhat among the
model simulations because their different standard deviations for temperature
(whereas rainfall standardized departures were more similar). The table indicates
that while anthropogenic forcing likely increased the probability of a heat wave
eclipsing a prior record value (from 5% to 7%), the event probability was increased
much more by the particular global SST conditions occurring in 2011. In the AMIP
runs, the probability of exceeding a 2-sigma heat wave is estimated at 24% during
summer 2011, compared to only a 4% probability during 1981-2010. The AMIP
runs present a consistent picture for the joint change in extreme drought and heat
wave probabilities with both conditions greatly increasing their probabilities in
2011, physically consistent with the known strong influence of dryness on
summertime temperature (e.g. Mueller and Senevirante 2012). By comparison, the
CMIP5 simulations reveal a different physical process operating. The effects of
greenhouse gas and aerosol forcing act to increase summertime temperatures
through radiative processes while not materially altering mean precipitation and
thus not initiating the strong surface energy balance responses and feedbacks that

lead to heat waves during droughts as occurred in 2011.

The current analysis has been conducted with respect to a 1981-2010 reference,
and in this sense all of the changes in probabilities can be meaningfully inter-

compared among various model simulations. One might, nonetheless, raise the
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more general question of how anthropogenic forcing has changed the event
probability in 2011, but relative to an earlier reference frame such as pre-industrial
climate. We address this question further in section 4. Here it is important to
recognize the difficulty in interpreting the meaning of such analysis given the lack of
an overall century-scale temperature trend over Texas. While our analysis supports
a view that most of the potential summertime Texas warming due to human
influences has likely emerged after 1980, there are large discrepancies between

CMIP and observed warming trends over longer periods.

e. Predictability

How predictable was the extreme event of 2011, and can our scientific
understanding of the causes for this extreme event be utilized to improve the
effectiveness of societal responses via early warnings (e.g. Lubchenco and Karl
2012)? The results from the NOAA/NCEP operational prediction systems are shown
in Fig. 13. These predictions warned in advance that Texas --- more so than any
other region over the U.S. in summer 2011--- was especially prone to having a
hot/dry summer as a consequence of the particular meteorological, oceanic, and soil
moisture settings in May 2011 from which each forecast system was initialized.
Nonetheless, the distributions of model realizations still affirms the rare and highly
unlikely outcome that was observed over Texas, even when the prediction systems
were constrained by observations as near to the event as May 2011. The predicted
mean temperature anomalies averaged for Texas were +0.7°C and +0.8°C and the

mean predicted precipitation departures were -22% and -9%, for CFSv1 and CFSvZ2,
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respectively. CFSv2 forecasts begun even earlier, based on April 2011
initializations, also consistently predicted elevated summer temperatures across the

southern Great Plains (Luo and Zhang 2012).

While recognizing the rarity of 2011 event occurrences within the ensemble of CFS
predictions, the changes in probability of exceeding prior record values was greatly
elevated in both systems relative to their event frequencies in the hindcast period.
Based on analysis of the PDFs in Fig. 13, Table 2 summarizes the estimated
frequencies and return periods for summer rainfall less than 50% of the models’
climatological rainfall (note from Fig. 5 that four such occurrences were observed
during 1895-2011). The event likelihood in 2011 predictions roughly doubled, and
an event of this intensity is estimated to have an 8-year return period for the 2011
initialized conditions compared to a 20-yr return period during the hindcast period
0f 1981-2010. For a heat wave magnitude threshold roughly equal to the prior
observed Texas summertime record, the predicted probability for 2011 more than

tripled relative to the overall probability in the hindcast period.

A more detailed analysis of the dynamical predictions will be the subject of a
separate study, though a few additional features of the predictions are worthy of
mention here. First, the magnitude of summer rainfall departures is more than
twice as large in CFSv1 compared to CFSv2, yet the two predictions produce similar
mean warming over Texas. While recognizing numerous fundamental differences in

these models which could have bearing on Texas climate variability, one notable
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difference is that CFSv2 includes time varying CO; and thus includes a factor
contributing to warming that is absent in CFSv1. Second, although both prediction
systems were initialized with the May 2011 soil moisture conditions, and thus in
principle incorporated the full intensity of the cumulative antecedent observed
drought, the uninitialized AMIP simulations (using GFSv2) yield warmer and drier
summer conditions. Reasons for this difference are not entirely known, although
substantial errors in the CFS SST forecasts for June-August (not shown) appear to
have forfeited some SST impacts on the summertime Texas extremes that were
incorporated in the AMIP forcing with observed SSTs. Finally, no formal
verification of the predicted changes in extreme event thresholds has been
presented herein, and indeed such an undertaking will be difficult given the rare
nature of such extreme events. In the interim, large multi-model approaches will be
essential that can provide some indication of confidence and uncertainty based on

model reproducibility.

4. Summary and Concluding Remarks

Through a physically-based analysis of observations and climate models, this study
sought to identify the causes for and the predictability of the extreme U.S. drought
and heat wave of 2011, whose epicenter was Texas but whose extent consumed
adjacent Southern Plains states as well. Placing the event within a climatological
context revealed a century-long decline in summer temperature and an increase in
rainfall over Texas. Thus, no strong evidence for a detected change toward either

hotter or drier summers was found for Texas specifically, consistent with prior
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studies revealing the central and southern U.S. to be a “warming hole” region overall
(Kunkel et al. 2006; Groisman et al. 2012). Our study demonstrated that the
principal physical process contributing to the record setting heat wave magnitude
was the occurrence of a commensurate extreme precipitation deficit, both during
the preceding winter/spring, and continuing during summer 2011. Our diagnosis
of climate simulations further confirmed that the probability of record setting
summer temperatures over Texas in 2011 was considerably elevated by the
condition of antecedent rainfall deficits (dry soils), consistent with empirical studies
on shifts in probabilities for hot summers conditioned by precipitation deficits

(Hirschi etal. 2011; Mueller and Senevirante 2012).

The paper addressed the underlying causes for the precipitation deficits,
demonstrating from diagnosis of AMIP simulations that much of the antecedent and
summer precipitation deficits were reconcilable with the region’s sensitivity to the
particular global SST patterns during 2011. Various lines of evidence indicated that
the drought-producing SST forcing was primarily associated with a naturally
varying state of the oceans, especially related to La Nifia conditions consisting of a
cold tropical east Pacific Ocean to which numerous prior observational modeling
studies have shown strong southern Plains rainfall sensitivity. Analysis of AMIP
simulations also revealed a 4-fold increase in the 2011 probability (relative to
chances during 1981-2010) that Texas summertime rainfall would be lower than
50% of normal. In contrast, our diagnosis of CMIP5 projections for 2011 revealed

no change in either seasonal mean Texas rainfall or the probability of extreme dry
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threshold exceedences, indicating that the drought, and the appreciable fraction of
observed summer heat attributed to the dryness, was primarily unrelated to
anthropogenic climate change. About 80% (2.3°C) of the observed 2011 Texas heat
wave magnitude of 2.9°C was estimated to have resulted from natural variability,
principally through physical processes associated with the severe rainfall deficits.
About 0.6°C (20%) of the heat wave magnitude relative to 1981-2010 mean was
estimated to be attributable to human-induced climate change, based on analysis of
time-evolving summertime surface temperature trends over Texas in observational

and various model data.

Diagnosis of seasonal forecast systems revealed that much of the regional pattern
and an appreciable fraction of the magnitude of both the summertime Texas rainfall
deficits and heat wave were predictable from May 2011 initializations. These
predictions for 2011 indicated appreciably elevated probabilities of exceeding prior
record heat wave and severe drought thresholds relative to the hindcast period of
1981-2010. They captured much of the change in event probabilities identified in
the retrospective AMIP simulations which were uninitialized, but were forced with

the actual observed ocean conditions.

This attribution study had a purpose and goal considerably broader than just an
assessment of the role of overall human-induced climate change, and examined
causes more generally with a goal to advance predictive understanding. Thus, to the

extent that natural variability played a key role in the extreme event (as it did in
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2011), we attempted to reconcile the characteristics and features of the underlying
natural processes with a capacity to predict their evolution and impacts. To this
end, we analyzed initialized coupled forecast systems that were part of NOAA’s
operational seasonal forecasting activities, the diagnosis of which was
complemented by a study of uninitialized CMIP5 simulations. The use of a recent
30-year reference period is standard procedure for expressing forecast anomalies in
operational seasonal prediction practices, and is also the standard WMO guideline
for diagnosing seasonal climate anomalies in routine monitoring practices. Yet, the
more narrow question of the attributable effect of overall human-induced climate

change since pre-industrial times is clearly also of interest.

We have conducted an additional analysis of CMIP5 simulations to assess how
extreme heat wave event probabilities for pre-industrial climate conditions changed
in those same models but under the influence of external radiative conditions circa
2011. We determined that the mean summertime temperature increase relative to
pre-industrial conditions is +1.2°C from such an analysis, double the estimated
warming relative to 1981-2010. Using a generalized extreme value (GEV) fit to the
histogram of model simulations (not shown), a Texas heat wave magnitude equal to
2011 observations (2.9°C) is found to have roughly a 250-yr return period in these
pre-industrial climate simulations, whereas such an event is found to have a 10-year
return period for 2011. There are various difficulties in interpreting such an
analysis and assessing its relevance to understanding observations. First, no
summertime warming over Texas in the long historical record has been detected,

and we emphasized in this paper that the CMIP5 model simulated Texas warming
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over the last century is inconsistent with observations. In the absence of a detected
warming over the long record, and in light of the uncertainty in the magnitude of
climate change in this region based on CMIP5 experiments, these estimates of
changes in event probability drawn solely from CMIP5 must be viewed with great
caution. Second, the CMIP5 models have considerably greater summertime
temperature variability over Texas than is observed, with the consequence that
greater event probabilities for temperature thresholds are estimated from the
models than likely exist in nature. To illustrate the considerable sensitivity of these
probabilities to exceedence thresholds used, we repeated the above analysis using
the observed standardized departure for 2011 (roughly 4 sigma, or 5°C for model
equivalent values), rather than employing the observed heat wave of 2.9°C as the
threshold. The GEV analysis of model simulations for 2011 then implies a roughly
350-yr return period, far different from the approximately 10-yr return period
estimated when using the observe heat wave magnitude as threshold value. In this
latter analysis based on standardized departures, one would draw the conclusion

that a heat wave event of the intensity of 2011 was indeed a very rare occurrence.

Ultimately, the question of greatest concern is whether a drought/heat wave as
severe as occurred over Texas in 2011 can be anticipated. Our results have some
implication for addressing such a concern. First, the results of this analysis provide
evidence for a considerable seasonal predictability of an event of the type observed
during 2011 owing to the impact of slow modes of ocean variability associated with
the El Nifio/La Nifia phenomenon (and perhaps also Atlantic SSTs). As such, a

capability for useful early warning several seasons in advance exists. Second, our
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analysis reveals that intrinsic variability of the atmosphere alone has the capacity to
generate drought and heat waves of considerable magnitude and was important in
determining the ultimate magnitude of this event. There is currently very limited
predictability of such atmospheric driven extremes at lead times beyond the time
scale of useful weather predictability of about 2 weeks. And, finally regarding the
possible impacts of human-induced climate change and its connection with
anticipating the 2011 event, several specific science challenges for the region of the
Southern Plains remain. In particular, there is a need for a complete and physically-
based explanation for why there has been a lack of overall warming during the last
century over this region; providing reasons for the overall increase in rainfall would

be key to understanding such a lack of warming.
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Figure Captions

Figure 1. The observed 2011 June-August (JJA) averaged surface temperature
departures (°C, top), the time series of JJA Texas surface temperature departures
(°C, bottom, left), and the probability distribution functions of the JJA Texas surface
temperatures for two sub-periods of the historical record: 1895-1954 (blue curve),
and 1955-2010 (red curve). The observed 2011 JJA Texas surface temperature
shown in gray tick mark. Data source is the NCDC U.S. Climate Divisions, and
departures are relative to 1981-2010 means. The PDFs are non-parametric curves
constructed using the R software program which utilizes a kernal density estimation

and a Guassian smoother.

Figure 2. Histogram of the temperature departures (°C) for the hottest Texas
summers occurring in consecutive, non-overlapping 100 year samples of CMIP5
pre-industrial simulations. The block maxima analysis is based on 18 different
CMIP5 models, most of which have at least 500-yr long simulations. The prior
record observed summertime Texas departure during 1895-2010 indicated by short
green tick mark, and the 2011 new record summer departure indicated by long
green tick mark. The red PDF is the Gaussian fitted curve to the histogram, while
the blue PDF is the non-parametric curve constructed using the R software program

which utilizes a kernal density estimation and a Guassian smoother.

Figure 3. The 15-case composite SST (°C, left) and U.S. precipitation anomalies (%

of climatology, right) based on the 1 in 100 year hottest summertime Texas heat
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wave events occurring in a 1500-yr simulation of CCSM4. The experiment is an
unforced, pre-industrial simulation. Top panels show contemporaneous conditions
for June-August, and bottom panels show antecedent conditions for October-May.

All anomalies are relative to the CCSM4 climatology.

Figure 4. Observed SST anomalies (°C, left) and U.S. precipitation anomalies (% of
climatology, right). Top panels show contemporaneous conditions for June-August
2011, and bottom panels show antecedent conditions for October 2010-May 2011.

All anomalies are relative to an observed 1981-2010 climatology.

Figure 5. The historical relationship between June-August Texas averaged rainfall
departures (% of climatology) and surface temperature departures (°C). Each dot
corresponds to a summer during 1895-2010, and the 2011 value is indicated by the
blue wagon wheel. Inset values are for the correlation (R) and the slope of the linear

fit expressed as °C/%Pcpn departure.

Figure 6. The June-August 2011 U.S. precipitation anomalies (% of climatology, left)
and surface temperature anomalies (°C, right). Observed (top), ensemble mean
AMIP simulated (middle), and ensemble mean CMIP5 simulated (bottom). The AMIP
results are based on an 80-member GFS average for 2011, and the CMIP results are
based on a 220-member average using 20 different models for a 11-year window of
JJA conditions centered on 2011. All anomalies are relative to the respective data

set’'s 1981-2010 climatology, and the observed scale of plotted anomalies is double
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that shown for the simulations. The reference AMIP simulation uses the same GHG

concentrations as those specified in the 2011 experiments.

Figure 7. Probability distribution functions of the AMIP (top) and CMIP5 (bottom)
simulated summer Texas precipitation anomalies (% of climatology, left) and
surface temperature (°C, right). Each panel plots two curves, one for the frequency
distribution of simulations during 1981-2010, and the other for the frequency
distribution of simulations during 2011. For CMIP5, 600 (220) individual
simulations are used for 1981-2010 (2011). For AMIP, 360 (80) individual
simulations are used for 1981-2010 (2011). The verical gray tic marks denote the
observed 2011 anomalies. All departures are relative to a 1981-2010 reference.
The PDFs are non-parametric curves constructed using the R software program

which utilizes a kernal density estimation and a Guassian smoother.

Figure 8. The AMIP (top) and CMIP5 (bottom) simulated relationship between June-
August Texas averaged rainfall departures (% of climatology) and surface
temperature departures (°C). Left (right) panels show the relationship for 1981-
2010 (2011). Each dot corresponds to the temperature/precipitation for a
particular model realization. For AMIP, there are 360 (80) realizations for 1981-
2010 (2011). For CMIP, there are 720 (220) realizations for 1981-2010 (2011).
Inset values are for the correlation (R) and the slope (b) of the linear fit expressed as

°C/%Pcpn departure. The blue wagon wheel denotes the observed JJA 2011 values.
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Figure 9. Observed (red curve) and AMIP ensemble mean (thick black curve)
cumulative Texas precipitation departures (mm) from October 20110 through
August 2011. Thin black curves are for each of the 80 members of the GFS AMIP
simulations. Orange curves are the cumulative precipitation departures for the
subset of 8 warmest Texas JJA 2011 GFS realization. Departures are computed

relative to the respective data sets’ 1981-2010 mean.

Figure 10. The simulated relationship between June-August Texas averaged rainfall
departures (% of climatology) and surface temperature departures (°C) for wet
(dry) Texas antecedent October-May conditions in green (red) dots. The data is
based on the 12-member suite of 1950-2010 GFS AMIP simulations, and the plotted
values are for the 10% wettest (driest) October-May realizations corresponding to

72 samples for each extreme.

Figure 11. Probability distribution functions (PDFs) of GFS simulated June-August
Texas surface temperature based on a joint condition of dry antecedent and dry
summer conditions (red curve), and for unconditional model realizations (blue
curve). Red PDF is comprised of the 41 realizations that were among both the driest
20% Oct-May and the driest 20% June-August conditions. Blue PDF is the
unconditioned frequency distribution that is comprised of all 720 model
realizations. Grey tic mark denotes the magnitude of the observed JJA 2011 Texas

temperature departure.
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Figure 12. Observed (green dot) and simulated (box/whiskers) trends in June-
August Texas surface temperature (°C/decade). Trends are computed for different
beginning years from 1901 (left most box) to 1981 (right most boxes), staggered at
10-year increments, while the end year for all trend calculations is 2010 Thus, the
longest trend period is for a 110-yr period (left side), and the shortest is for a 30-yr
period (right side). Dark (light) box/whiskers display the CMIP5 (AMIP) simulation
trends based on a 20-member (12-member) ensemble. The extreme values of the

model simulated trends are shown by the red and blue asterikes.

Figure 13. NOAA/NCEP operational dynamical predictions of June-August
seasonally averaged precipitation anomalies (% of climatology, left) and surface
temperature anomalies (°C, right). Probability distribution functions as in Fig. 7.
Spatial anomaly maps as in Fig. 6, except based on the ensemble mean of the CFS
forecasts. For CFSv1, 435 (124) individual hindcasts (forecasts) are used for 1981-
2009 (2011). For CFSv2, 696 (124) individual hindcasts (forecasts) are used for
1982-2010 (2011All hindcasts and forecasts are based on initializations from May
analyses, and anomalies are calculated relative to the period of available hindcast
climatologies for all May initializations

Table 1. Summary of the climate simulations, predictions, and projections

diagnosed in the current paper, including the nature of their external and boundary
forcings, the length of integrations, and the available ensemble size.
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Type Model Radiative SST, Duration Ensemble
Forcing Sealce (Target time) | Members
Pre-industrial | CMIP5 Pre-industrial | Coupled =500 years 1 run each for
simulation 18 models
Historical GFSv2 Observed CO; | Observed 1950-2010 12
simulation (AMIP)
Event GFSv2" Observed CO; | Observed Oct. 2009 - 80
simulation (AMIP) Sep.2011
Historical CMIP5 Observed Coupled 1880-2005 1 run each for
simulation (see text) 20 models
Projection CMIPS RCP 4.5 Coupled 2006-2016 1 run each for
(see text) 20 models
Forecast CFSv1 1988 CO: Coupled June 01 - 120(initialized
(0-lead) August 31, every 6 hours)
2011
Hindcast CFSv1 1988 CO: Coupled June 01 - 15 (initialized
(0-lead) August 31, once daily,
1981-2009 staggered
every 2 days)
Forecast CFSv2 Observed & Coupled June 01 - 120(initialized
(0-lead) projected CO2 August 31, every 6 hours)
2011
Hindcast CFSv2 Observed CO2 | Coupled June 01 - 24 (initialized
(0-lead) August 31, every 6 hours,
1982-2010 staggered
every 5 days)

* Anomaly calculated relative to a 1981-2010 GFSv2 AMIP set having same CO; as the 2011 runs.

Table 2. The left column shows the simulated June-August 2011 Texas
precipitation anomalies for the indicated suite of models based on their ensemble
average 2011 simulations relative to a 1981-2010 model reference. The standard
deviation of simulated June-August surface temperatures is the average of the 1981-
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1291
1292

2010 runs and the 2011 runs. Event probability and return period in the third
column is for the exceedence of a less than 50% of normal precipitation deficit.
Event probabilities and return periods in the fourth column are for exceeding this
same threshold, but based on the distribution of simulations for 2011. The
probabilities are calculated from the non-parametric curves of the simulated
frequency distributions shown in the Fig. 7 for CMIP and AMIP, and Fig. 13 for CFS.

JJA MODEL EVENT EVENT PROBABILITY

MODEL 2011 STD DEV PROBABILITY (2011)

TEXAS (1981-2010) RETURN PERIOD

Panom RETURN PERIOD

+0.2% 36.8% 6% 6%
CMIP5 17yr 17yr

-33.9% 36.3% 9% 34%
AMIP 11yr 3yr

-21.5% 36.1% 7% 16%
CFSv1 14yr 6yr

-9.1% 33.4% 5% 12%
CFSv2 Zoyr 8yr

Table 3. The left column shows the simulated June-August 2011 Texas surface
temperature anomalies for the indicated suite of models based on their ensemble
average 2011 simulations relative to a 1981-2010 model reference. The standard
deviation of simulated June-August surface temperatures is the average of the 1981-
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2010 runs and the 2011 runs. Event probability and return period in the third
column is for the exceedence of a 2 standardized departure warming over Texas for
the 1981-2010 distribution of simulations. Event probabilities and return periods

in the fourth column are for exceeding this same threshold, but based on the
distribution of simulations for 2011. The probabilities are calculated from the non-

parametric curves of the simulated frequency distributions shown in the Fig. 7 for
CMIP and AMIP, and Fig. 13 for CFS.

JJA | MODEL EVENT EVENT PROBABILITY

MODEL 2011 | STDDEV | PROBABILITY (2011)
TEXAS (1981-2010) RETURN PERIOD
Panom RETURN PERIOD
£0.6°C | 1.2°C 3% 6%

CMIP5 33yr 17yr
+1.1°C | 09°C 4% 23%

AMIP 25yr 4yr
+0.7°C | 0.8°C 3% 10%

CFSvl 33yr 10yr
+0.8°C | 0.7°C 2% 17%

CFSv2 Soyr 6yr
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Figure 1. The observed 2011 June-August (JJA) averaged surface temperature
departures (°C, top), the time series of JJA Texas surface temperature departures
(°C, bottom, left), and the probability distribution functions of the JJA Texas surface
temperatures for two sub-periods of the historical record: 1895-1954 (blue curve),
and 1955-2010 (red curve). The observed 2011 JJA Texas surface temperature
shown in gray tick mark. Data source is the NCDC U.S. Climate Divisions, and
departures are relative to 1981-2010 means. The PDFs are non-parametric curves
constructed using the R software program which utilizes a kernal density estimation
and a Guassian smoother.
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Figure 2. Histogram of the temperature departures (°C) for the hottest Texas
summers occurring in consecutive, non-overlapping 100 year samples of CMIP5
pre-industrial simulations. The block maxima analysis is based on 18 different
CMIP5 models, most of which have at least 500-yr long simulations. The prior
record observed summertime Texas departure during 1895-2010 indicated by short
green tick mark, and the 2011 new record summer departure indicated by long
green tick mark. The red PDF is the Gaussian fitted curve to the histogram, while
the blue PDF is the non-parametric curve constructed using the R software program
which utilizes a kernal density estimation and a Guassian smoother.
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Figure 3. The 15-case composite SST (°C, left) and U.S. precipitation anomalies (%
of climatology, right) based on the 1 in 100 year hottest summertime Texas heat
wave events occurring in a 1500-yr simulation of CCSM4. The experiment is an
unforced, pre-industrial simulation. Top panels show contemporaneous conditions
for June-August, and bottom panels show antecedent conditions for October-May.

All anomalies are relative to the CCSM4 climatology.
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Figure 4. Observed SST anomalies (°C, left) and U.S. precipitation anomalies (% of
climatology, right). Top panels show contemporaneous conditions for June-August
2011, and bottom panels show antecedent conditions for October 2010-May 2011.
All anomalies are relative to an observed 1981-2010 climatology.
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Figure 5. The historical relationship between June-August Texas averaged rainfall

departures (% of climatology) and surface temperature departures (°C). Each dot

corresponds to a summer during 1895-2010, and the 2011 value is indicated by the

blue wagon wheel. Inset values are for the correlation (R) and the slope of the linear
fit expressed as °C/%Pcpn departure.
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Figure 6. The June-August 2011 U.S. precipitation anomalies (% of climatology,
left) and surface temperature anomalies (°C, right). Observed (top), ensemble mean
AMIP simulated (middle), and ensemble mean CMIP5 simulated (bottom). The AMIP
results are based on an 80-member GFS average for 2011, and the CMIP results are
based on a 220-member average using 20 different models for a 11-year window of
JJA conditions centered on 2011. All anomalies are relative to the respective data
set’s 1981-2010 climatology, and the observed scale of plotted anomalies is double
that shown for the simulations. The reference AMIP simulation uses the same GHG
concentrations as those specified in the 2011 experiments.
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Figure 7. Probability distribution functions of the AMIP (top) and CMIP5 (bottom)
simulated summer Texas precipitation anomalies (% of climatology, left) and
surface temperature (°C, right). Each panel plots two curves, one for the frequency
distribution of simulations during 1981-2010, and the other for the frequency
distribution of simulations during 2011. For CMIP5, 600 (220) individual
simulations are used for 1981-2010 (2011). For AMIP, 360 (80) individual
simulations are used for 1981-2010 (2011). The verical gray tic marks denote the
observed 2011 anomalies. All departures are relative to a 1981-2010 reference.
The PDFs are non-parametric curves constructed using the R software program
which utilizes a kernal density estimation and a Guassian smoother.
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Figure 8. The AMIP (top) and CMIP5 (bottom) simulated relationship between
June-August Texas averaged rainfall departures (% of climatology) and surface
temperature departures (°C). Left (right) panels show the relationship for 1981-
2010 (2011). Each dot corresponds to the temperature/precipitation for a
particular model realization. For AMIP, there are 360 (80) realizations for 1981-
2010 (2011). For CMIP, there are 720 (220) realizations for 1981-2010 (2011).
Inset values are for the correlation (R) and the slope (b) of the linear fit expressed as
°C/%Pcpn departure. The blue wagon wheel denotes the observed JJA 2011 values.
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Figure 9. Observed (red curve) and AMIP ensemble mean (thick black curve)
cumulative Texas precipitation departures (mm) from October 20110 through
August 2011. Thin black curves are for each of the 80 members of the GFS AMIP
simulations. Orange curves are the cumulative precipitation departures for the
subset of 8 warmest Texas JJA 2011 GFS realization. Departures are computed
relative to the respective data sets’ 1981-2010 mean.
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Figure 10. The simulated relationship between June-August Texas averaged rainfall
departures (% of climatology) and surface temperature departures (°C) for wet
(dry) Texas antecedent October-May conditions in green (red) dots. The data is
based on the 12-member suite of 1950-2010 GFS AMIP simulations, and the plotted
values are for the 10% wettest (driest) October-May realizations corresponding to
72 samples for each extreme.
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Figure 11. Probability distribution functions (PDFs) of GFS simulated June-August
Texas surface temperature based on a joint condition of dry antecedent and dry
summer conditions (red curve), and for unconditional model realizations (blue
curve). Red PDF is comprised of the 41 realizations that were among both the driest
20% Oct-May and the driest 20% June-August conditions. Blue PDF is the
unconditioned frequency distribution that is comprised of all 720 model
realizations. Grey tic mark denotes the magnitude of the observed JJA 2011 Texas
temperature departure.
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Figure 12. Observed (green dot) and simulated (box/whiskers) trends in June-
August Texas surface temperature (°C/decade). Trends are computed for different
beginning years from 1901 (left most box) to 1981 (right most boxes), staggered at
10-year increments, while the end year for all trend calculations is 2010 Thus, the
longest trend period is for a 110-yr period (left side), and the shortest is for a 30-yr
period (right side). Dark (light) box/whiskers display the CMIP5 (AMIP) simulation
trends based on a 20-member (12-member) ensemble. The extreme values of the
model simulated trends are shown by the red and blue asterikes.
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Figure 13. NOAA/NCEP operational dynamical predictions of June-August
seasonally averaged precipitation anomalies (% of climatology, left) and surface
temperature anomalies (°C, right). Probability distribution functions as in Fig. 7.
Spatial anomaly maps as in Fig. 6, except based on the ensemble mean of the CFS
forecasts. For CFSv1, 435 (124) individual hindcasts (forecasts) are used for 1981-
2009 (2011). For CFSv2, 696 (124) individual hindcasts (forecasts) are used for
1982-2010 (2011All hindcasts and forecasts are based on initializations from May
analyses, and anomalies are calculated relative to the period of available hindcast
climatologies for all May initializations.
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