Figure S1. U.S. seasonal soil moisture anomalies (mm) during the 12-month period
antecedent to the occurrence of dry May-August conditions over the central Great
Plains during 2012 (lower right panel). Soil moisture has been estimated by driving
a one-layer bucket water balance model with observations of monthly temperature
and precipitation. The data set spans 1948-present, and the method is described in
Huang et al. (1996).

7

8	Figure S2. Composite U.S. seasonal precipitation anomalies (mm) during the 12-
9	month period antecedent to the occurrence of dry May-August conditions over the
10	central Great Plains during historical droughts. Based on the average of the 9 driest
11	May-August events during 1895-2011, including 1934, 1936, 1901, 1976, 1913,
12	1988, 1953, 1911, and 1931. Data source is the NOAA U.S. Climate Divisions.
13	
14	Figure S3. (top) Observed climatological May-August 700 hPa specific humidity
15	(left, g/kg) and 700 hPa meridional wind magnitude (right, m/s). (bottom)
16	Anomalous May-August 2012 700 hPa specific humidity (left. g/kg) and anomalous
17	700 hPa meridional wind magnitude (right, m/s). Data source is the NCEP/NCAR
18	reanalysis. Departures are relative to a 1981-2010 reference.
19	
20	Figure S4. The linear correlation between an index of observed May-August U.S.
21	central Great Plains summer rainfall (see Fig. 6) and May-August surface

22 temperatures. Period of analysis is 1895-2011. Statistically significant correlations

23 are confined to the central U.S. where there is a strong inverse correlation between

1

- 24 summer rainfall and summer land surface temperature. Data source is the monthly
- 25 NOAA Merged Land-Ocean surface temperature analysis (MLOS).

26
 27
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Figure S1. U.S. seasonal soil moisture anomalies (mm) during the 12-month period antecedent to the occurrence of dry May-August conditions over the central Great Plains during 2012 (lower right panel). Soil moisture has been estimated by driving a one-layer bucket water balance model with observations of monthly temperature and precipitation. The data set spans 1948-present, and the method is described in Huang et al. (1996).

- 55
- 56
- 57
- 58
- 59 60
- 61

Observed PPT Departures: MJJ Yr-1 to May-Aug Yr O

Figure S2. Composite U.S. seasonal precipitation anomalies (mm) during the 12-

65 month period antecedent to the occurrence of dry May-August conditions over the 66 central Great Plains during historical droughts. Based on the average of the 9 driest

- 67 May-August events during 1895-2011, including 1934, 1936, 1901, 1976, 1913,
- 68 1988, 1953, 1911, and 1931. Data source is the NOAA U.S. Climate Divisions.

(left, g/kg) and 700 hPa meridional wind magnitude (right, m/s). (bottom)
Anomalous May-August 2012 700 hPa specific humidity (left. g/kg) and anomalous
700 hPa meridional wind magnitude (right, m/s). Data source is the NCEP/NCAR
reanalysis. Departures are relative to a 1981-2010 reference.

Central U.S. May-Aug PPT vs. May_Aug Tmp 1895-2012, N=118

84 85

Figure S4. The linear correlation between an index of observed May-August U.S.

87 central Great Plains summer rainfall (see Fig. 6) and May-August surface

temperatures. Period of analysis is 1895-2011. Statistically significant correlations

are confined to the central U.S. where there is a strong inverse correlation between

90 summer rainfall and summer land surface temperature. Data source is the monthly

91 NOAA Merged Land-Ocean surface temperature analysis (MLOS).