Water Cycle Physical Processes – Emerging Science: Land Surface Hydrology and Watershed Dynamics

Jim McNamara
Boise State University
Idaho, USA
Context: Predictive models tasked with representing processes “need preceded science” (Rafael Bras)

What knowledge is essential to incorporate into models?
Problems

- Problem: Calibrated models criticized for not representing processes
 - Black Box can be “Right for the Wrong Reasons”
 - Flux right, internal states wrong
 - Next generation models should get fluxes AND states right

- Problem: Field experiments criticized for not asking the right questions
 - Irrelevant answers
 - Site specific
Problems

- Problem: Calibrated models criticized for not representing processes
 - Black Box can be “Right for the Wrong Reasons”
 - Flux right, internal states wrong
 - Next generation models should get fluxes AND states right

- Problem: Field experiments criticized for not asking the right questions
 - Irrelevant answers
 - Site specific

- Solution:
 - Identify *significant processes and properties on the ground* at watershed scale
 - Develop new models informed by discovery
Problems

• Solution:
 – Processes are known
 – Incorporate BEHAVIOR into model evaluation strategies
 • More than outputs, but INTERNAL DYNAMICS
“Emerging” Science
significant processes and properties

• “Old water” dominates storm hydrographs

Determination of the Ground-Water Component of Peak Discharge from the Chemistry of Total Runoff

GEORGE F. PINDE R AND JOHN F. JONES
Nova Scotia Department of Mines, Halifax, Nova Scotia

Abstract. The ground-water component of stream discharge may be determined from the chemical characteristics of the stream water. A chemical mass-balance is used to relate total, direct, and ground-water runoff. To solve the mass-balance equation, it is necessary to estimate the chemical composition of the ground-water and direct-runoff components. The solute concentration of ground water is determined from total runoff during baseflow; the chemical characteristics of direct-runoff are estimated from samples of total runoff collected from selected locations in a basin during peak discharge periods. In three small watersheds in Nova Scotia ground-water runoff constituted from 32 to 42% of peak discharge for the period of analysis.
The old “Old Water” problem

Hundreds of case studies since 1969

Scores of local explanations
- watershed behavior highly heterogeneous

Continued recent discoveries
- See work by Jeff McDonnell et al...and Jim Kirchner et al.
- not old vs new, but stormflow is composed of a continuum of ages

Challenges to remain
- Still at odds with concepts embedded in many commonly used models (Hortonian Overland Flow)

Emerging since 1969

Until models get this right, they are “Right for the Wrong Reasons” and cannot handle change (paraphrased from Kirchner)
The Heterogeneity Problem

- Two solutions
 - Measure everything everywhere, unknowns are simply a matter of poor characterization
 - Unrealistic (Newtonian, me, persevering science)
 - Recognize patterns and emergent properties
 - Watershed behavior is more the accumulation of arrows (Darwinian, emerging science)

- Watershed “lump” processes producing emergent properties

- A physical basis for lumped parameter modeling
Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology

J. J. McDonnell, 1,2 M. Sivapalan, 3 K. Vaché, 4 S. Dunn, 5 G. Grant, 6 R. Haggerty, 7 C. Hinz, 8 R. Hooper, 9 J. Kirchner, 10 M. L. Roderick, 11 J. Selker, 12 and M. Weiler 13

Received 28 August 2006; revised 14 March 2007; accepted 15 March 2007; published 26 July 2007.

[1] Field studies in watershed hydrology continue to characterize and catalogue the enormous heterogeneity and complexity of rainfall runoff processes in more and more watersheds, in different hydroclimatic regimes, and at different scales. Nevertheless, the ability to generalize these findings to ungauged regions remains out of reach. In spite of their apparent physical basis and complexity, the current generation of detailed models is process weak. Their representations of the internal states and process dynamics are still at odds with many experimental findings. In order to make continued progress in watershed hydrology and to bring greater coherence to the science, we need to move beyond the status quo of having to explicitly characterize or prescribe landscape heterogeneity in our (highly calibrated) models and in this way reproduce process complexity and instead explore the set of organizing principles that might underlie the heterogeneity and complexity. This commentary addresses a number of related new avenues for research in watershed science, including the use of comparative analysis, classification, optimality principles, and network theory, all with the intent of defining, understanding, and predicting watershed function and enunciating important watershed functional traits.

Model Structures

Lumped Model

\[Q(t) = f(P(t), A, C) \]

Semi-Distributed Model, Conceptual

Distributed Model, Physics based

Data Requirement:
- Small

Computational Requirement:
- Small

Predicted States Resolution:
- Coarser

Process Representation:
- Parametric

Perceived Intellectual Value:
- Small

\[\frac{\partial \phi}{\partial t} = \nabla (\phi U) + \nabla (\Gamma \nabla \phi) + Q \]
Lumped Model

\[Q(t) = f(P(t), A, C) \]

Semi-Distributed Model, Conceptual

\[\frac{\partial \phi}{\partial t} = \nabla (\phi U) + \nabla (\Gamma \nabla \phi) + Q_{ss} \]

Distributed Model, Physics based

Outcome:

- Right for Wrong Reasons
- Wrong for Right Reasons

History:

- Mathematical Lumping
- Process Understanding

Future:

- Process Understanding
- ?
Distributed Model,

Physics based

\[\frac{\partial \phi}{\partial t} = \nabla \cdot (\phi U) + \nabla \cdot (\Gamma \nabla \phi) + Q_s \]

Physically Lumped Model

\[Q(t) = f(P(t), A, C) \]

History:
Mathematical Lumping
Process Understanding

Future:
Process Understanding
Emergent properties guide "lumping"
Lumped Watershed Properties (emergent behavior)

- **Hydrologic Connectivity**
 - Timing of hillslope-stream connectivity dictates response

- **Thresholds**
 - Non-linear response depending on hydrologic state

- **Water residence time**
 - Distribution key to watershed dynamics
Emergent Behavior: Hydrologic Connectivity

- Facilitates lateral redistribution

Figure courtesy of Jeff McDonnell

Spatial distribution in soil moisture
Tarawarra Catchment
Western and Grayson (1998)
Grayson and Bioschl (2000)
Hillslope-riparian-stream water table connection

UAA 45,000 m²

Max bar height = 100% Of the year

R² = 0.91

Jencso et al., 2009 WRR
Hydrologic connectivity may be a good predictor of watershed runoff

Strong correlations between watershed form (UAA) and function (connectivity)

Frequency of connections controls watershed discharge rather than the magnitude at the connections

Models incorporating connectivity may lead to improved prediction

Jencso et al., 2009 WRR
Emergent Behavior: Thresholds at storm scale

Figure courtesy of Jeff McDonnell

- Panola, Georgia, USA (Tromp-van Meerveld and McDonnell, Chapter 1)
- Maimai, New Zealand (Mosley, 1979)
- Tatsunokuchi-yama exp. forest, Honsyu Island, Japan (Tani, 1997)
- H.J. Andrews exp. forest, Oregon, USA (McGuire, unpublished data)
Emergent Behavior: Thresholds at seasonal scale

McNamara et al., 2005
Emergent Behavior: Residence time distribution

Figure courtesy Chris Soulsby
Transit times and catchment characteristics

Fast responding catchments

Deep-subsurface flow dominated catchments

Figure courtesy Chris Soulsby
Residence Time Predicted by Watershed Properties

Figure courtesy Chris Soulsby
Recent Theoretical Advances

Catchment residence and travel time distributions: The master equation

Gianluca Botter,1 Enrico Bertuzzo,1,2 and Andrea Rinaldo1,2

Received 4 April 2011; accepted 27 April 2011; published 7 June 2011.

1 The probability density functions (pdf’s) of travel and residence times are key descriptors of the mechanisms through which catchments retain and release old and event water, transporting solutes to receiving water bodies. In this paper we analyze theoretically such pdf’s, whose proper characterization reveals important conceptual and practical differences. A general stochastic framework applicable to arbitrary catchment control volumes is adopted, where time–variable precipitation, evapotranspiration and discharge are assumed to be the major hydrological drivers. The master equation for the residence time pdf is derived and solved analytically, providing expressions for travel and residence time pdf’s as a function of input/output fluxes and of the relevant mixing. Our solutions suggest intrinsically time-variant travel and residence time pdf’s through a direct dependence on hydrological forcings and soil–vegetation dynamics. The proposed framework integrates age-dating and tracer hydrology techniques, and provides a coherent framework for catchment transport models based on travel times. Citation: Botter, G., E. Bertuzzo, and A. Rinaldo (2011), Catchment residence and travel time distributions: The master equation, Geophys. Res. Lett., 38, L11403, doi:10.1029/2011GL047666.

Travel time distributions are a product of integrated catchment processes

Can serve as a target to determine if models are right for the right reasons
Emerging science: Emergent properties

Connectivity
Thresholds
Residence Time

How do we quantify?
How do we incorporate in models?
Emergent properties are a function of storage

\[P - ET - Q = \frac{dS}{dt} \]
A Tale of Two Catchments
A Natural Storage Experiment

McNamara et al., 1998

Storage Capacity

Flow (cms)

% Old Water

Runoff Ratio

McNamara et al., 1998
Storage-Discharge

• In SOME watersheds, discharge can be modeled as a single function of storage
• The shape of the S-D curve may contain information about the watershed

Kirchner, 2009
Importance of Storage

\[P - ET - Q = \frac{dS}{dt} \]

- The mechanisms by which catchments store water ultimately characterize the hydrologic system.
- Storage regulates fluxes (ET, Recharge, Streamflow).
- Storage is responsible for emergent behavior such as connectivity, thresholds, and residence time.

Storage Capacity

Flow (cms)

% Old Water

Runoff Ratio

[Graphs showing changes in storage capacity, flow, percentage of old water, and runoff ratio over time from 13-Jun to 12-Aug.]
Importance of Storage

\[P - ET - Q = \frac{dS}{dt} \]

- We should focus on Runoff Prevention mechanisms in addition to runoff generation mechanisms.
- We should concern ourselves with how catchments Retain Water in addition to how they release water.

![Graph showing storage capacity, flow, and percent old water over time.](image)
The Storage Problem

- Storage is not commonly measured

- Storage is often estimated as the residual of a water balance

- Storage is treated as a secondary model calibration target
Our Modeling Experience

• Soil Water Assessment Tool (SWAT)

Hydrograph “Right”

Storage Wrong

Stratton et al., 2009
Improved storage characterization will lead to improved prediction

Get the inputs right (accumulation, STORAGE, and ablation of snow)

Get the 1D soil water storage right

Ignore all lateral movement

No calibration to streamflow

See what happens

Seyfried et al., 2009, Hydrological Processes
Soil Capacitance Model (Reynolds Creek)

- Throughflow occurs when soil column water holding capacity is exceeded.
- Soil water storage parameterized by field capacity, plant extraction limit, soil depth.

\[
S = \sum_{i=1}^{\text{numlayer}} \theta_i T_i \quad S_{FC} = \sum_{i=1}^{\text{numlayer}} \theta_{fc_i} T_i
\]

Seyfried et al., 2009, Hydrological Processes
Distributed Model

Distributed energy balance forcing

Distributed soil properties by similarity classes

No lateral flow simulated
Simulated storage excess agrees with streamflow

Connectivity Index

\[S_N = \frac{S - S_{PEL}}{S_{FC} - S_{PEL}} \]

![Graphs and maps showing connectivity index and streamflow over Water Year 2003](image)
CUAHSI Catchment Comparison Exercise

Dry Creek, Idaho, USA
Snowy, semi-arid, ephemeral

Girnock, Scotland, Rain, humid

Reynolds Creek, Idaho, USA
Snowy, semi-arid, perennial

Gårdsjön, Sweden, Snow, ephemeral

Panola, Georgia, USA
Rain, humid, perennial
Storage-Discharge

Signature of geology?

- Dry Creek
- Gårdsjön
- Girnock
- Reynolds
- Panola

Streamflow (mm) vs Storage (mm)

Equations:

- $S = 786Q^{0.32}$
- $S = 253Q^{0.11}$
- $S = 251Q^{0.05}$
- $S = 219Q^{0.06}$
- $S = 87Q^{0.05}$

McNamara et al., 2011
• Use internal BEHAVIOR of watersheds, in addition to states and fluxes

• Discover metrics of internal behavior (emerging science of emergent properties)

• Requires creative coupled field and modeling experiments
Summary

• Watersheds “lump” processes producing emergent behavior manifested in
 – Connectivity, Thresholds, Residence Time Distributions (old water)

• Incorporate into new model structures or serve as validation targets

• Evaluate model performance on watershed behavior, or internal dynamics, in addition to traditional states and fluxes time series.

• Quantifying Storage ….quantify emergent properties

• Get the States right, and the Fluxes will follow