Quantitative Precipitation Forecast Challenges and Opportunities

David Novak
Science and Operations Officer
NOAA/NWS/Hydrometeorological Prediction Center

With contributions from Dave Reynolds, Keith Brill, Mike Bodner, Mike Eckert, and Marty Rausch
Hydrometeorological guidance for:

- NWS field offices
- Other NCEP centers
- Federal/state agencies
- Aviation
- Media
- Private sector
- International partners
- Academic community
- General public

HPC Operations

- QPF
- Winter Weather
- Medium Range
- Surface Analysis
- Model Diagnostics
- Short Term Weather
- Alaska Med. Range
- Daily Weather Map
- Tropical
Motivation

Flooding is a leading cause of weather-related deaths

"Improvements in QPF and mesoscale rainfall prediction need to be a top NWS research and training priority."

2009 SE US Flood Service Assessment

Nashville: May 1, 2010
Seattle: Jan 7, 2009
Atlanta: Sept. 21, 2009
Forecast improvement of extreme events (4”) lags improvement of more common events (1”)

Extreme Events are Challenging
Predictability Varies by Event Type

Variety of extreme precipitation hazards

- **Best:** Tropical
- **Worst:** Warm Season Convection

-All poorly forecast
-Some more challenging than others

Event Verification (4"/24 h) (Jan 2008 – Sep 2010)
QPF Improvement Gap

Threat Scores: 1-Inch QPF Day 1

Dec-Jan-Feb and Jun-Jul-Aug

Cool Season

Warm Season
Hydrometeorological Prediction Center

Improving Warm Season QPF
A multi-faceted problem

Observations (Dual-Pol, Satellites, UAV)
Data Assimilation (EnKF)
Model & Ensemble System
 - Resolution
 - Physics
 - Ensemble configurations
Post Processing (Bias-correction, etc)

Communicating Uncertainty

Critical Needs
• High Performance Computing
• Testbeds

Fritsch and Carbone (2004)
Testbeds – A Continuing Success Story

Spring Experiment

HMT-HPC Leading QPF Component of Hazardous Weather Testbed Spring Experiment since 2010

Partners: ESRL, SPC, OU, NSSL, DTC, GOES-R

QPF Goal: Do convection-allowing models improve warm season QPF?

- 3 components (Severe, Initiation, QPF)
- 5 week program (May 9 - June 10)
- ~80 participants from research, academia, and operations
Preliminary 2011 Results

Skill varies widely among convection allowing-guidance

Best performing
- Parallel NAM nest (NMMBnest)
- “Poor man’s” ensemble (SSEO)
- Storm Scale Ensemble (SSEF)

Visualizations tested
- Spaghetti plots to be adopted

Warn-on-Forecast for Flash Floods
Oklahoma City, June 14, 2010

Operational Ensemble

0% Probability 2” in 6 hours

Exp. Storm Scale Ensemble

50-70% Probability 2” in 6 hours

18 h Forecast

Spring Experiment has demonstrated concept
Convection-allowing runs being integrated into HPC operations via Hydrometeorological Testbed

547 AM EDT TUE JUL 20 2010

VERY FRUSTRATING QPF PATTERN...PIECES OF SHRTWV ENERGY FIRING CNVCTN WHICH THEN...BEGINS TO TAKE ON A LIFE OF ITS OWN...THE BULK OF MODEL GUIDANCE HAS WOUND UP BEING TOO FAR NORTH WITH THE AXIS OF HEAVIEST PCPN. THE HI RES ARW HAS DONE A MUCH BETTER JOB THAN NCEP AND NON-NCEP MODEL SUITES IN SHOWING THIS SRN DISPLACEMENT...
A Proposal
An Extreme Rainfall Improvement Analogy

- Extreme rainfall analogous to hurricane intensity problem
 - Deadly
 - Little progress made

- NOAA Hurricane Forecast Improvement Project (HFIP)
 - Reduce track & intensity error 20% within 5 years
 - Catalyst & focusing mechanism for community
 - Uses testbeds embedded within operational center
 - Resourced
 - Solicit proposals on direct operational forecast challenges
 - Staffed to do testing and evaluation
Imagine the HFIP of Extreme Rainfall

Main Themes

• Focus community around ambitious operational goals
 • e.g., Double Extreme Rainfall Threat Score
 • e.g., Establish probabilistic QPF and services

• Focus relevant NOAA testbeds to support effort
 • Collaborative regional/phenomenon-based experiments and demonstrations
 • Solicit proposals from research community
 • Embed within operational centers

• Build relevant IRWSS partnerships

• Resource the effort
 • High performance computing
 • Test and evaluation staff
Imagine the HFIP of Extreme Rainfall

Benefits

- Reduce deaths and damage associated with floods

- Advance the end-to-end prediction system
 observations \rightarrow models \rightarrow hydro forecasts \rightarrow communication

- Build Warn-on-Forecast for Floods

- Improvements benefit other disciplines
 - If you improve extreme rainfall predictions, you likely improve aviation, severe, winter, and tropical weather predictions