Physical Process Underlying the Water Cycle

• NOAA Water Services
 – River Forecast Centers
 • Main stem river stages
 • >6 hrs to 3 days
 • Lumped runoff & snowmelt models (Sacramento, Snow-17)
 – Weather Service Forecast Offices
 • Flash floods
 • <6 hrs, small catchment or debris basins
 • Empirical statistics based on historical rain/event data
 – Growing need for seasonal to decadal outlooks for water
Physical Process Underlying the Water Cycle

• NOAA forecast system works well in vast majority of the time
• Some (spectacular) failures related to extreme events (rain in dry basins, very heavy rain)
 – Outside experience of current models/stats
 – New paradigm of physically-based models in some situations
 – New observations to support those models
• Changing world obsoletes previous calibrations
Why do hydro prediction models fail?

• That is, what are the critical physical processes that aren’t handled well?
 – Rain/snow transitions
 – Rain on snow events (rapid melt)
 – Regional effects (including human activities) and space/time scales drive the physics
 – Ground water storage and proper handling of antecedent conditions (arid environments)
 – Bad QPF!
How to facilitate research toward next generation paradigm of hydro forecasting

• Academic researcher/forecaster exchange
• Inventory of model failures & historical data for quantitatively evaluation of progress
• Testbed for hydro technique/model evaluation
 • RFC & WSFO problems
 • Not necessarily the same place (water center??)
• Focused integrated field experiments (HMT expansion?)
Improvements to QPF

• Atmospheric model improvements
 – Microphysics
 – Radiation
 – Boundary-layer process (e.g., evaporation)
• Coupled hydro/atmos models
 – feedbacks
• Data assimilation systems
 – Dual-pol radar
 – Soil moisture
• Role of testbeds
 – Evaluation of process parameterizations (e.g., sub surface storage, fluxes)
Is It Time to Move Toward a Community Hydro Model?

- NWS/CHIPS provides structure
- CUHAI support
- More rapid transition from research results to operations
- “Modules” that fit within the framework. Each could be tested within a testbed
Integration of physics, observations, and models

• Improved physics must be guided by observations

• Integrated long-term observatories with advanced hydrometeorological observations (HMT) with experimental watersheds
 – PUT THEM IN THE SAME PLACE!!
Laundry-list of Physical Processes

• Processes known but scale dependencies need to be figured out
• HUMAN actions
• snow processes & cold region physics
• ground water (connection to surface, flow rates to deep aquifers, water quality)
• Over-lake evaporation
• Multi-physics thermal/moisture packages and vegetation phenology
• sensitivity of hydrologic model to atmos persistence
• Atmospheric river duration and movement – better characterization of water vapor transport
• Cloud microphysics & Aerosols
• Land surface heat fluxes feedback to atmosphere, land use changes
• drought and low flow issues
• sensitivity of hydro models to precip (QPE/QPF)
• Low-flow conditions - droughts
Low Flow

• New direction for NOAA
 – Predict the entire flow duration curve
• Models must incorporate new processes
 – Vegetation dynamics
 – Hillslope and riparian ET
 – Gaining and losing channels
 – Human actions
 – Channel geomorphology
 – New routing techniques
 – ...