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- Complete SEB measurements
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Surface Energy Budget (SEB)

1. Net and atmospheric energy fluxes at the surface (snow, ice, or soil),
Foo, F

atm

|:net = |:atm — |:O = S\Nd - S\Nu + I—\Nd' I-\Nu - Hs - I_II - I:0
= S\Nnet + I—\Nnet - Hturb - |:O

net’

where SW , Sw,, LW, LW, are incoming/outgoing shortwave/longwave radiative fluxes;
H,, H, are turbulent sensible/latent heat fluxes, which are either measured directly
(Eureka) or calculated from bulk algorithm (Alert)

2. Energy flux into our out of soil, F,— either measured directly (Eureka
only) or calculated from soil temperature profiles (Alert) via

AT
FO — FlO + Cpsl EAZ
oy [(TaTs Tt T+ Toy T+ T T
— _ksl - Cpsl (Zlo - Zsfc)
Los — L5 3(tn+1 - tn—l)

ky = soil thermal conductivity = 3.0 W m K-

C,s1 = S0il heat capacity = 2.0 x 107 J m3 K-(frozen; 2.6 x 107 for unfrozen)
Ky/Cps = thermal diffusivity = 1.5 x 107 m? st

n = time index (hourly)
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Alert Annual Cycle of Surface Eneregy Budget
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1) F,, cools surface Sep-Mar, warms Jun-Aug
2) All components of F_,,, significant

3) SW,.; (summer) & Lw,,, (year round) largest
4) Hy,, warm surface in winter & cool Jun-Aug

5) Soil is warmed mid-Apr through mid-Aug

1) SW,; gain & LW, loss nearly balance
2) Surface energy gain by F,,,, due to residual H,,,
3) Average soil energy loss rate is 0.4 W m
4) For system balance: F;,, + Fy, = -F¢,
- error only ~0.2 W m
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Annual Cycle of Alert GAW Soil Temperatures
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1) Active layer (T > 0° C) begins at £

surface near Jul 2, reaches maximu o—————-—

depth of 77 cm in mid-Aug, and is
gone by Aug 22 (51 days).

2) active layer disappears when F,

10-day running means

becomes negative and F, positive
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early Oct until mid-Nov to early Dec —
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Wind-regime dependent SEB
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Three wind regimes
- winter drainage flow

- mountain wave regime distinctly separate from winter drainage flow
- summer sea-breeze
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Effects of Local Wind Regimes on Alert GAW SEB
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1) strong SW wind regime produces least cooling in winter and strongest warming in summer —
likely reason for relatively “warm” winter T,

2) ENE wind regime produces greatest F_,, because it is the dominant summer regime

3) all three regimes crucial for Alert mesoclimate and likely produced by mesoscale processes
(downslope winds/mountain waves; sea-breeze)
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Alert Base
Tleg Oy Mid-Winter Atmosphere-Soil
Interaction

1) Effect of descent of
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Eureka - Flow regimes & vertical structure
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SEB and Tsoil (2009 & 2010)

Eureka Surface Energy Fluxes Snow Depth, SGIl Temperalure 2009
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SW,, 150-300 W m-2 during summer

net

LW, strongly negative (~-100 W m-?)
Riming problems severely limits quality of winter
radiation and turbulence data

Winter soil data suggest atmospheric forcing of high-
frequency soil thermal variability
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Year Day

Melt onset (Snow starts melting): YD144, YD151 (May 24, May 31)
Bare ground (soil active layer starts): YD155, YD159 (June 4, 8)
Active layer max depth: 76 cm, 69 cm (YD220-240; July 8-28)
Active layer end: YD250, YD250 (Sep. 7)

Active layer length: 91-95 days
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CONCLUSIONS

1) Alert: mesoscale wind regimes (e.g., downslope wind events,
sea-breeze, drainage flows) have important impacts on SEB;
Eureka: terrain orientation governs lower troposphere flow and
structure

2) Midwinter downslope wind events impact soil temperatures
despite deep snow at Alert; winter T, variability suggests the
same at Eureka

3) Soil active layer reaches 69-77 cm at both Alert and Eureka

4) Soil active layer persists for 91-95 days at Eureka, 50-55 days at
Alert (earlier/later melt onset/end at Eureka; shallow snow at
Eureka = SW, large in early summer)

5) Surface snow evolution key for formation of soil active layer

6) Winter riming major problem for quality of radiation and
turbulence data
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Alert Annual Cycle of Surface Eneregy Budget
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1) F,, cools surface Sep-Mar, warms Jun-Aug
2) All components of F,,,, significant

3) SW,; contributes nearly 190 W m-2 in July
4) LW, loss ~30 Wm-2 in winter & ~60 W m-
in July

5) H,, warms surface in winter & cools in July;
H,, cools in Jun-Aug

6) Soil is warmed mid-Apr through mid-Aug

1) SW, . gain & LW, loss nearly balance
2) Surface energy gain by F_,,, due to residual H,,,
3) Average soil energy loss rate is 0.4 W m-2
4) For system balance: F,,,, + Fy = -Fq,
- error only ~0.2 W m-2
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Annual Cycle of Alert GAW Soil Temperatures

120

80—

1) Active layer (T > 0° C) begins at £
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Site Description — Alert (Northern Ellesmere Island 82.3° N)
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