The National Earth System Prediction Capability (National ESPC) Project
Daniel P. Eleuterio, Office of Naval Research
Arctic Prediction Workshop, Boulder, CO
May 14, 2014
National ESPC Overview

An interagency collaboration, initiated between Navy, Air Force and NOAA and expanded to DoE, NASA, and NSF in 2012, for coordination of research to operations of a National earth system analysis and prediction capability. The original project combined global weather models in an operational synoptic multi-model ensemble under NUOPC.

Seeks improved communication and synergy, for global prediction of weather, ocean, and sea ice conditions at weather to short-term climate variability timescales.

• Common prediction requirements and forecast model standards that enable agencies to improve leverage and collaboration.
• A national research agenda that will improve prediction across scales from days to decades.
• Cooperative focus projects to assess predictability of global scale high impact environmental conditions to inform S&T, R&D, and transition to operations.
• Towards an multi-model ensemble based air-sea-land coupled global prediction capability

http://espc.oar.noaa.gov/
The Navy Earth System Prediction Capability (Navy ESPC)

The Navy Earth System Prediction Capability (ESPC) program will provide a more accurate, longer range, global ocean and atmospheric forecast system for decision support to safety of flight, safety of navigation, sensor and weapon performance, and mission planning, mitigation and effectiveness decisions.

- Development of global coupled ensemble technologies will provide increased accuracy for lead times of 1-30 days as well as a new capability for accurate forecasts in the Arctic at all lead times and for extended range outlooks for probabilistic prediction globally.

- It will develop a Navy interface to NOAA products for seasonal to multi-annual lead times for operational and strategic planning through integrating atmosphere, ocean, ice, land and near-space forecast models into a seamless prediction system.

- This effort is the Navy contribution to a National ESPC for improved cross-Agency collaboration for Research to Operations, and the development of more efficient, accurate and scalable modeling systems for massively parallel new computational architectures to allow for improved real-time operational prediction across timescales.
United States Navy Leadership Role and Missions in the Arctic Region

The Navy will continue to have a significant leadership role in the Arctic Region to enable the joint and interagency community to operate in this hard-to-reach, isolated, and harsh environment. Through its global reach capability and worldwide command and control, Navy leadership will support joint and interagency efforts, enhance information sharing, and develop enterprise solutions that can be employed across United States Government and allied partner agencies operating in the Region.

Additionally, Navy has Title 10 responsibilities to "maximize the safety and effectiveness of maritime vessels, aircraft, and forces of the armed forces" by means of marine data collection, numerical weather and ocean prediction, and forecasting of hazardous weather and ocean conditions.

Navy Arctic Roadmap Implementation Plan

• Sustain development and participation in Earth System Prediction Capability (ESPC): Develop the capability for coupled ocean-atmosphere-land-cryosphere modeling in the Navy to support strategic decisions related to operations, platforms and facilities.

• Develop and execute a CONOPS for Arctic environmental Observer/Forecaster (Sea Ice, Ocean and Atmospheric) support to Navy platforms operating in the Arctic that includes organizational structure and location.

• Support efforts to research, develop, resource and sustain an Arctic environmental observation and prediction system to support U.S. operations (Surface, Subsurface, HA/DR, SAR, and Air) in the Arctic as part of an interagency effort.
Need: Seamless Full Earth System

Partnerships:
- NOPP
- HFIP
- NMME
- USGCRP
- USCLIVAR
- NUOPC
- Community Models

National ESPC

Atmosphere
- GFS, NAVGEM,
- MMM, GOCART
- CRTM, RRTMG
- NUOPC

Ice
- CICE
- ArcticCap

Ocean
- HyCom
- Wave Watch III
- MOM

Land
- NOAH
- LIS
- Ecosystems
National ESPC Management Structure

Executive Steering Group

NOAA, Navy, Air Force, DOE, NASA, NSF

Resources Coordination Board
Agency Liaisons & Program Managers

Navy Deputy Project Manager

Air Force Liaison

Technical Director

NOAA Deputy Project Manager

Committees
Unified Ensemble Operations
Integrated Modeling Systems
Common Global Model Metrics
Common Model Architecture
Content Standards Committee
Physics Interoperability

Focus Areas
Mid-Latitude Blocking
Seasonal Arctic Sea Ice
Seasonal Tropical Cyclone Track and Frequency
Coastal Harmful Algal Blooms/Hypoxia (HABS)
Atlantic Meridional Overturning Circulation (AMOC)
Coupled Model Development

Navy ESPC Highlights - Infrastructure

Design infrastructure for operational implementation for coupled system

- Define implementation across operational systems, architecture requirements, cycling setup including DA

Existing Uncoupled System

- NAVGEM-LSM (land-surface)
 - DA: LIS
- 2D-NCODA (ice & sst)
 - DA: NCODA
- HYCOM (ocean)
 - DA: NCODA
- CICE (ice)
 - DA: NCODA
- WW3 (waves)
 - DA: NCODA
- NAAPS (aerosol)
 - DA: NAVDAS-AOD

Future ESPC Coupled System

- CICE (ice)
 - DA: NCODA
- NAVGEM-LSM (land-surface)
 - DA: LIS
- HYCOM (ocean)
 - DA: NAVDAS-AR
- WW3 (waves)
 - DA: NCODA
- NAAPS (aerosol)
 - DA: NAVDAS-AOD

- “Operational Implementation Design” has details on data volumes, resources required, and operational job distributions
- Naval Research Laboratory Memorandum Report 7320--14-9498
Navy ESPC
Operational Implementation Design

Projected horizontal and vertical resolutions of the individual ESPC system components at NCR-1 (IOC) in 2018.

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Time Scale, Frequency</th>
<th>Atmosphere NAVGEM</th>
<th>Ocean HYCOM</th>
<th>Ice CICE</th>
<th>Waves WW3</th>
<th>Land-Surface NAVGEM-LSM</th>
<th>Aerosol NAAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic short term</td>
<td>0-10 days, daily</td>
<td>20 km 80 levels (T639L80)</td>
<td>1/25° (4.5 km) 41 layers</td>
<td>1/25° (4.5 km)</td>
<td>1/8° (14 km)</td>
<td>3/16° (21 km)</td>
<td>3/16° (21 km)</td>
</tr>
<tr>
<td>Deterministic long term</td>
<td>0-30 days, weekly</td>
<td>20 km 80 levels (T639L80)</td>
<td>1/12° (9 km) 41 layers</td>
<td>1/12° (9 km)</td>
<td>1/4° (28 km)</td>
<td>3/16° (21 km)</td>
<td>3/16° (21 km)</td>
</tr>
<tr>
<td>Probabilistic long term</td>
<td>0-90 days, weekly</td>
<td>37 km 50 levels (T359L50)</td>
<td>1/12° (9 km) 41 layers</td>
<td>1/12° (9 km)</td>
<td>1/4° (28 km)</td>
<td>1/3° (37 km)</td>
<td>1/3° (37 km)</td>
</tr>
</tbody>
</table>
Plots show SST rms and bias errors for a NAVGEM/HYCOM coupled run and a sequence of loosely coupled runs for November 2011. The coupled run and the loosely coupled runs all use NAVGEM 1.1 and the new 41-layer HYCOM. The coupled run has a smaller bias and lowest forecast error than the loosely coupled runs. Coupling eliminates most of the cold bias found in the loosely coupled runs.
First US Navy long term seasonal forecasts of sea ice

- NRL participated in the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook 2013 estimating the Sept Arctic sea ice extent minimum.
- The Navy’s Arctic Cap Nowcast/Forecast System (ACNFS) – HYCOM/CICE with prescribed atmosphere was used
- Integrated ACNFS through summer in ensemble mode using NOGAPS atmospheric forcing (2005-2012), eight independent runs each initialized from 01 May 2013 conditions
- Plan to augment this with coupled air/ocean/ice configuration

Sept 2013 minimum extent
Observed – 4.81 Mkm²
ACNFS estimate – 4.9 Mkm²
Atmosphere & Sea-Ice Coupling

Sea Ice/Ground Temperature (K)

Allowing inter-model feedbacks as part of a two-way coupled system produces a realistic forecast, which permits use for further investigation into specific model biases and important coupling mechanisms.
Earth System Prediction Suite (ESPS) Common Model Architecture

ESPS is a collection of Earth system component models and interfaces that are interoperable, documented, and available for community use. ESPS is intended to

- formalize code preparation for cross-agency use
- simplify “toolkit” code selection for the broader research community
- focus on coupled modeling systems
- leverage legacy investments from NASA, NOAA, NSF, DOE, and Navy
- bridge climate (CESM) and weather (ESMF) scales through software convergence
- establish “plug-and-play” implementation via the NUOPC interoperability layer.

ESPS codes:

- are NUOPC-compliant
- include model documentation
- have clear terms of use
- include compliance checking and tests for correct operation across the development community.

http://www.earthsystemcog.org/

Deluca2013
Navy ESPC Global Coupled Prediction System Development

<table>
<thead>
<tr>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPC Coupled Global Prediction System</td>
<td></td>
</tr>
<tr>
<td>Demonstration Projects & Pre-Operational Implementation and Validation</td>
<td></td>
</tr>
<tr>
<td>ESPC Ensemble System</td>
<td></td>
</tr>
<tr>
<td>ESPC Next Generation Dynamic Core</td>
<td></td>
</tr>
<tr>
<td>Navy Tier 2/3 Products from Inter-Agency Seasonal Ensembles</td>
<td></td>
</tr>
<tr>
<td>ESPC Regional Arctic System</td>
<td></td>
</tr>
<tr>
<td>ESPC Computational Efficiency</td>
<td></td>
</tr>
<tr>
<td>Coordinated Inter-agency Research</td>
<td></td>
</tr>
<tr>
<td>Milestones</td>
<td></td>
</tr>
</tbody>
</table>
DRAFT
Interagency National ESPC Fielding Plan (2018)

National Global Prediction Needs

Navy and DoD Capability

TC-COAMPS Others

NAVGEM/HYCOM/CICE/WW-3 NAVGEM Ensemble

NUOPC/NAEFS Ensemble

HFIP Ensemble

NUOPC Ensemble

NOAA Capability

HWRF GFDL GFS

GFS, HYCOM, WW-3 GEFS Ensemble Multi-Model Ensemble

Climate Fcst System (CFSv2/3) National Multi-Model Ensemble (NMME)

CFS-R, HURDAT, etc.

Forecast Lead 0-7 Days ↔ Forecast Lead 8-14 Days ↔ Forecast Lead 15-30 Days ↔ Forecast Lead 31 – 90 Days ↔ Forecast Lead 3 – 18 Months ↔ Annual to Decadal
Navy Arctic Guidance

• USN “Arctic Roadmap” (2009, 2014)
• N2N6E Arctic Capability Based Assessments (2010, 2011)
• Interagency Arctic Research Policy Committee (IARPC) Arctic Research Plan (2013)
• Department of Defense Arctic Strategy (2013)
• US National Strategy for the Arctic Region (2013) and Implementation Plan (2014)

Navy’s Strategic Objectives for the Arctic Region
From 2014 USN Arctic Roadmap

• Ensure U.S. Arctic sovereignty and provide homeland defense
• Provide ready naval forces to respond to crises and contingencies
• Preserve freedom of the seas
• Promote partnerships within the U.S. Government and international allies
MAJOR THRUSTS:

1. Generation of **new observing technologies and methods** (platforms, sensors, communications) that will enable persistent observational capabilities in the Arctic

2. **Improved basic physical understanding** of the Arctic environment and the important coupled processes that drive evolution and predictability in the Arctic region

3. Development of **fully-integrated Arctic System Models** incorporating the ocean, sea ice, waves and atmosphere for **improved prediction at longer lead times**, including the use of satellite SAR data for assimilation into integrated models

Advances in technology will be required to enable an interagency Arctic Observing Network that will support scientific exploration and be able to initialize predictive models of the environment.
A sensing system must be developed to provide persistent observations that can further scientific understanding, provide long-term monitoring, and constrain the predictive models. Autonomous platforms – Robust Sensors – Real-time Data Delivery – Key Environmental Variables

Novel Sensing Systems

Autonomous Platforms and Enabling Technologies

- **Acoustically-navigated Gliders**
 - Repeated sections
 - Resolves deformation scale (5 km).
 - Samples at ice-ocean interface.
 - T, S, dissolved oxygen.
Thrust 2: Improved Physical Understanding

A better understanding of the integrated physics and dynamics in the “new” Arctic will enable more accurate representation of these processes in the models, leading to improved predictions.

Sea ice dynamics

Changes in Oceanic and Atmospheric Circulation and Variability

Changes in the Acoustic Structure of the Arctic Ocean
Thrust 3: Integrated Arctic Prediction

Fully-coupled ocean-wave-ice-atmosphere models with sufficient resolution to represent the relevant processes, and that assimilate in situ and remotely-sensed observations to create useful predictions of the operational Arctic environment at a wide range of lead times.

EARTH SYSTEM PREDICTION CAPABILITY

Integrated Arctic System Models
ocean – ice – wave – atmosphere

Advanced Data Assimilation

Ice thickness measured from below

Coupling with Global Earth System Models

J. Wallace, University of Washington
Arctic Coverage Using Commercial SAR

Merging of data from multiple commercial platforms can provide daily coverage of the Arctic at high spatial resolution.

Images will be analyzed for:
- Daily global Arctic mosaic map
- Daily/weekly rate of melting or freezing
- Iceberg and glacier monitoring
- Monitoring of Northwest Passage
- Glacial and ice movements (hourly, daily, weekly, monthly speed and direction)

Algorithm development is ongoing for joint analysis of multiple platforms and sensor types.

Data collections focus on the Bering Strait and the Beaufort/Chukchi Sea areas in support of field efforts in 2014 and 2015.
ONR is working the Arctic prediction problem on a variety of space and time scales, with NRL expertise and investment in model development with the academic performer community, including NPS, UW/APL and many others.

Future Regional Arctic System (RAS)
Flexible Coupled Relocatable Model Domain

HYCOM-NAVGEM-CICE-WW3
Model grid resolution ~ 3.5 km
Black line is the independent ice edge location (NIC)

NCOM-COAMPS-CICE-WW3

POP + multiple ice models

POP-Polar WRF-CICE

MIZMAS: Marginal Ice Zone Modeling and Assimilation system (UW/APL)

RASM: Regional Arctic System Model (NPS)
Development and Transition

Arctic Prediction System Development

Fieldwork to better understand key physical processes

Validation and Verification

Improved physics built into data-assimilating integrated models

Transition to Operational Use
Backup
Challenges to Achieve a Weather-Ready Nation

- Hail, Tornadoes, Tropical Storms & Hurricanes
- Winter Storms, Ice
- Extreme Heat and Cold
- Droughts and Floods
- Climate Adaptation
- Sea Level Rise
- Commerce and Navigation
- Aviation Transportation
- Food Security
- Air and Water Quality
- Ecosystem Health
- Private Sector and National Security

Home Field Emphasis

National Weather Enterprise
Public Safety and Economic Well-being of Nation
Public-Private Partnership
We provide worldwide forecasts to support DoD Operations – from the tropics to the poles, and from the depths of the ocean to the edges of space, across the coast to support stability operations, humanitarian assistance and disaster relief.
National ESPC Goals

Build the next generation operational national environmental prediction system:

• Advance computational and environmental numerical prediction science and technology through coupled model development
• Identify and quantify uncertainty and risk though probabilistic prediction: multi-model ensembles
• Enhance our understanding of the complex interactions of the earth environmental system through process studies
• Improve operational predictive capability with better skill scores and longer lead times through technology transition
• Provide insight and guidance for informed decisions in an increasingly complex and changing global human enterprise

Implement an ESPC Suite across partner Operational Prediction Centers
Strategy

Seamless Prediction System

Weather Model (currently 7-10 days)

New prediction systems

Adaptive Grids (and other improvements to computational efficiency)

Seasonal Prediction (1-3+ months)

Coupled with ocean (30 days)

Climate Model (currently decadal to centennial)

Increased resolution

Seamless Prediction

Coupled with ocean (30 days)

Climate Model (currently decadal to centennial)

Increased resolution

Seamless Prediction
The Changing Arctic

Observed Changes in Arctic Sea Ice

- Sea Ice Volume Anomaly
- Year: 1980 to 2013
- Anomaly Trend: \(-3.2 \pm 1.0 \) [1000 km2/Decade]
- Last Day: 2013-09-30
- Version: IC-531 Version 2.0

Projected Changes in September Arctic Sea Ice Extent

- Year: 1900 to 2100
- From Jeffries, et al. (2013)

30-year average September ice edge shown in yellow (NASA)
Better basic understanding of the dynamics of the Marginal Ice zone is needed to simulate and predict the ongoing decrease in summer ice coverage and volume in the Beaufort and Chukchi Seas.
A study of ocean waves and swell in the Beaufort and Chukchi Seas, to better understand the impact of more Arctic open water on air-sea interaction and the remaining sea ice cover

- FY14: Pilot projects to test new platforms and observing techniques
- FY15: Major field effort in 2015 involving both autonomous sensors and sampling from the new UNOLS Arctic Research Vessel Sikuliaq

\[\frac{d}{dt}(E) + \frac{d}{dx}(c_g E) = S_{\text{wind}} - S_{\text{brk}} + S_{nl} + S_{\text{ice}} \]

This knowledge will enable safer, more efficient naval operations in the Arctic through better Arctic domain awareness, improved sensing and communications, and assist in the development of coupled Arctic system models.
Utilization of Academic Performer Data Collection Capabilities

Optical Sensors:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Country</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPOT-4</td>
<td>France</td>
<td>(med hi-res - 10 m)</td>
</tr>
<tr>
<td>SPOT-5</td>
<td>France</td>
<td>(hi-res – 2.5 m)</td>
</tr>
<tr>
<td>SPOT-6</td>
<td>France</td>
<td>(hi-res – 1.5 m)</td>
</tr>
<tr>
<td>DEIMOS-1</td>
<td>Spain</td>
<td>(med hi-res - 22 m)</td>
</tr>
<tr>
<td>ENVISAT-MERIS†</td>
<td>ESA</td>
<td>(wide-res – 250 m)</td>
</tr>
<tr>
<td>ALOS/AVNIR-2†</td>
<td>Japan</td>
<td>(med hi-res - 10 m)</td>
</tr>
<tr>
<td>EROS-B</td>
<td>Israel</td>
<td>(very hi-res – 70 cm)</td>
</tr>
<tr>
<td>MODIS-TERRA/AQUA</td>
<td>US/NASA</td>
<td>(wide-res – 250 m)</td>
</tr>
<tr>
<td>FormoSat-2*</td>
<td>Taiwan</td>
<td>(hi-res – 2 m)</td>
</tr>
</tbody>
</table>

*virtual reception capability; † ceased operation, power failure, archive access

Microwave Radar Sensors:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Country</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVISAT-ASAR†</td>
<td>ESA</td>
<td>(med-res – 25 m)</td>
</tr>
<tr>
<td>ERS-2§</td>
<td>ESA</td>
<td>(med-res – 25 m)</td>
</tr>
<tr>
<td>ALOS/PALSAR†</td>
<td>Japan</td>
<td>(med-res SAR – 10 m)</td>
</tr>
<tr>
<td>PAZ (TSX clone)</td>
<td>Spain</td>
<td>(very hi-res SAR – 1 m)</td>
</tr>
<tr>
<td>RadarSat-1</td>
<td>Canada</td>
<td>(med-res SAR – 10 m)</td>
</tr>
<tr>
<td>RadarSat-2</td>
<td>Canada</td>
<td>(very hi-res SAR – 1 m)</td>
</tr>
<tr>
<td>TerraSAR-X</td>
<td>Germany</td>
<td>(very hi-res SAR – 1 m)</td>
</tr>
<tr>
<td>Cosmo-SkyMed</td>
<td>Italy</td>
<td>(very hi-res SAR – 1 m)</td>
</tr>
<tr>
<td>Tandem-X</td>
<td>Germany</td>
<td>(very hi-res SAR – 1 m)</td>
</tr>
</tbody>
</table>

§operation to end early July – de-orbit, † ceased operation, power failure, archive access
Seasonal Ice Zone Reconnaissance Surveys (SIZRS)

SIZRS Methods

• Conduct repeat (2-4 week intervals) atmospheric and oceanographic surveys of the seasonal ice zone using US-Coast Guard ADA flights (May-Sept. 2012-2014)
• Air deployed ocean sensors (AXCTD, AXCP), drifters
• Multispectral Imaging, LIDAR
• Atmospheric sensing (Dropsondes, drifting buoys)
• Regional modeling (Atmosphere-Ice-Ocean)
• Micro-Aircraft/Smartsonde development

USCG Kodiak C-130H
Example 322AG Core Program Investments

- Operationally merged satellite visible/IR and passive microwave sea ice information for improved sea ice forecasts and ship routing (NASA/NRL Collaboration)

- Detecting, Tracking, and Predicting the Fine Scale Motion of Arctic Sea Ice Fragments from Multiple Satellite Sensors (CUNY w/ NUWC)

- Developing Remote Sensing Capabilities for Meter-scale Sea Ice Properties

- Enhancement of the International Arctic Buoy Program (UW)

- Multiscale Models of Melting Arctic Sea Ice (w/ Code 31)

- Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover (UW & ERDC/CRREL)
SCICEX

Coordinated effort between the research community and operational Navy to take scientific-quality observations in the Arctic from submarines

• SCICEX Phase I: Dedicated Science Missions
 – Vital role measuring Arctic bathymetry, ice, ocean
 – Dedicated science cruises ended in 1999

• SCICEX Advisory Committees
 – Science Advisory Committee (SAC)
 – Inter-Agency Committee (IAC)
 • ONR, NSF, USARC, ASL

• SCICEX Phase II Science Plan Developed in 2010
 – Currently running “Science Accomodation Missions”
 – “Menu” of preferred measurements to be taken in desired locations, time permitting
 – Next opportunity during the 2014 ICEX (March 2014)
ONR’s Arctic and Global Prediction Program is investing in research to enable the Navy to prepare for and respond to future Arctic missions and concerns, in recognition of the emerging interest in the region.

Primary thrusts:

- Observing tools, with an emphasis on autonomous platforms and sensors
- Basic understanding of the physical Arctic system, with a focus on the surface conditions and sea ice
- Development of the Arctic component of ESPC-class numerical prediction systems enabling improved forecasts