Drivers & Products

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Driver</th>
<th>Product</th>
</tr>
</thead>
</table>
| 8 days- 2 weeks | • weather forecasters
 • Emergency management
 • Fishing fleet
 • Fuel resupply/ Public safety / Aviation | • guidance for forecast
 • increased chance of storminess
 • ice edge; freezing spray
 • advance notice of prolonged cold/warm |
| 3-4 weeks | • River Forecast Center
 • Oil & Gas Regulators | • river ice breakup guidance
 • sea ice break-up/freeze-up |
| 1-2 months | • Fire weather forecasters | • fuel condition/dryness/storminess/ precipitation temporal distribution |
| 3-6 months | • Industry operational planning | • scheduling: site access probability/ ice road construction window |
| 6-8 months | • Industry operational planning | • Freeze-up/Break up probabilities |
| Interannual & Beyond| • Fishery managers
 • Engineers | • sea ice/ocean condition for stock assessment
 • precipitation amount/type for design |
Initialization data to improve predictions

• Considered “low hanging fruit” for improving predictions
 – Regarding initialization for sea ice forecasts,
 • better use of upper ocean information for ice freeze up forecasts
 • ice thickness information may also improve summer predictions

• More general challenges
 – Effectively using available observations
 – Obtaining new observations
 • encourage useful observations from “ships of opportunity”, industry, etc.?
 • new instrumentation for ice-covered waters?
 – Can we determine what data will be useful for predictions of other aspects of the Arctic system

• In longer term, we need a better understanding of where and what critical observations are needed for Arctic prediction
 – Design observing networks to fit these needs
Evaluating and Improving Predictions

• Low hanging fruit:
 – Assessment of existing systems (NMME) for high latitudes
 – Using NWP knowledge to inform evaluation metrics
 – Better capitalize on existing/ongoing research (synthesis efforts?)

• Longer term challenge of improving predictions
 – Need to understand (and communicate) inherent limits of predictability
 – Need for enhanced process understanding and improvements in models
 • Coupling across system components, Cloud microphysics