Understanding Atmospheric Forcing of Arctic Sea Ice through Surface Energy Fluxes

Ola Persson

Science Review
12-14 May 2015
Boulder, Colorado
Take-Away Points

a) PSD measuring/analyzing **ALL** surface energy budget (SEB) terms
- SEB simple but powerful tool
- reveals process relationships
- used for model/reanalysis validations

b) Synoptic events
- large, important energy flux variability
- trigger melt-season transitions

c) Compensatory energy flux effects
- damp energy flux/T changes during non-melt season
- non-existence during summer allow stronger melt
Surface Energy Budget over Sea Ice (SEB)

Net energy flux to ice surface, F_{net}

$$F_{net} = F_{atm} + F_c = SW_d (1-\alpha) + LW_d - LW_u - H_s - H_l + F_c$$

Each term associated with limited number of physical processes
(e.g. LW_d affected by atmospheric temperature and cloud characteristics)

Measuring each term – links physical processes, F_{net} & ice changes

Changes in one term often produces compensatory changes in other terms
- feedbacks reduce F_{net}, but limited by the physics of the compensatory processes
Sea Ice and Surface Energy Budget Variability
(SHEBA, multi-year ice)

Snow cover, ice temperatures (color), ice outlines

Annual cycle
Mass: bottom freeze, top snowfall, surface melt, later bottom melt
T_{ice}: large T gradient in winter, ~isothermal in summer (at melting point)

Synoptic F_{net} Variability ~ 10-20 W m$^{-2}$

SEB terms, ice-surface melt

Annual F_{net}: 5-10 W m$^{-2}$

30-year ice mass loss: 1-2 W m$^{-2}$
Kwok and Untersteiner (2011)

sfc T, air T, albedo

Kwok and Untersteiner (2011)

Persson (2012)
Impacts of Compensatory Fluxes

Non-melt season:
- T_s can vary
- Net radiation changes leads to compensating responses in H_s, H_l, F_C
- Limits F_{net} and T changes

Melt season:
- T_s fixed at 0° C
- No compensating responses to net radiation changes
- F_{net}/ice melt fully affected by changes in each term
- Importance of melt-season length

Science Review • Boulder, CO • 12-14 May 2015
Synoptic Event Triggers Melt Onset

1) Melt onset - often triggered when above-freezing air aloft coincides with liquid clouds

2) Melt onset due primarily to
 a) increase in LW$_d$ (LW$_{net}$) from warm, storm clouds and
 b) decrease in α from surface rainfall and melt

3) Earlier melt onset for years with melt triggered by warm-air advection events
 - Russian drifting station data
Summary

a) PSD measuring/analyzing all SEB terms
 - “truth” for validating models/reanalyses

b) Synoptic events produce large F_{net} variability
 - frequency of synoptic events important for annual and climatic sea-ice changes

c) Compensatory SEB terms impact F_{net} magnitudes
 - summer non-existence contributes to large F_{net}/melt & importance of melt-season length

d) Synoptic events trigger melt-season transitions
 - suggests melt-season lengthening due to long-range transport

Future Work

a) Measure SEB annual cycle in changing Arctic
 - over FY sea ice, emerging open water, & MIZ
 - SEB impacts of changing synoptic forcing
 - e.g., MOSAiC, other field programs

b) Autumn freeze-up
 - quantify ocean heat loss; understand processes & impacts
 - key for current NOAA research

c) Continue/improve use of observations for model/reanalysis validation & development
 - e.g., Year of Polar Prediction