Understanding and Explaining Causes of Weather and Climate Related Extreme Events

Judith Perlwitz
PSD’s Objective:
Provide physical explanation of the *magnitude* and probability of extreme events to assess their predictability

NOAA Mission:
To understand and predict changes in climate, weather, oceans, and coasts
PSD’s Objective:
Provide physical explanation of the magnitude and probability of extreme events to assess their predictability

NOAA Mission:
To understand and predict changes in climate, weather, oceans, and coasts
PSD’s Objective:
Provide physical explanation of the magnitude and probability of extreme events to assess their predictability

NOAA Mission:
To understand and predict changes in climate, weather, oceans, and coasts
PSD’s Objective:
Provide physical explanation of the magnitude and probability of extreme events to assess their predictability

NOAA Mission:
To understand and predict changes in climate, weather, oceans, and coasts
A Tale of Two Extremes - The 2011 Texas Drought and Heat Wave

An Extreme Event with more than 7 Billion Dollar in Agricultural Loss Alone
What are possible contributing factors to the 2011 Texas drought and heat wave?

Analysis Approach

- Role of anthropogenic forcing (including increase in GHGs)
- Role of forcing associated with anomalous boundary conditions (SST, sea ice, soil moisture)
- Unforced internal variations
Observed Temperature and Precipitation Changes

Temperature
- ~ 0.6°C for 1981-2010
- ~ 0°C for periods starting prior to ~1950

Precipitation
- Century-scale trend towards wetter conditions for annual means
Role of Anthropogenic Forcing (based on 20 CMIP5 models)

- No significant change in precipitation
- Nearly homogenous temperature pattern over U.S.
- \(\sim 0.6^\circ C \) temperature increase over Texas (20%)
- Increase in probability for new temperature record from 3% to 6%
Anomalous Lower Boundary Conditions

Concurrent
Summer 2011

Preceding
Oct 2010 - May 2011

- Preceding moderate La Niña event that decayed by summer
- La Niña related preceding drought conditions

Hoerling et al. 2013
Role of SST patterns (GFS AMIP ensemble)

- Forced atmospheric response captures several regional features of 2011 climate conditions
- ~1.1°C temperature increase over Texas (40%)
- Increase in probability for new temperature record from 4% to 23%

Hoerling et al. 2013
Role of Prolonged Drought Conditions

Estimated PDF of Texas summer temperatures when the preceding and concurrent precipitation were both in lowest 20% of AMIP runs over years 1950-2010

- Extreme warm summer conditions were more likely in AMIP simulations when both preceding and concurrent conditions are dry.

Hoerling et al. 2013
Conclusions of Study

- No strong evidence for a detected change towards either hotter or drier summer based on historical records.
- Virtually all the precipitation deficits appear to be related to natural variability.
- Contributing factors to heat wave magnitude relative to 1980-2010:
 - ~40% due to a severe rainfall deficit (antecedent and concurrent season) related to anomalous SST (including La Niña)
 - ~20% due to human induced climate change
Was this event predictable?

- Forecasts initialized in May were able to anticipate much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.
Each Extreme Event has Different Predictive Attributes

Atmospheric internal variability
2010 Russian Heat Wave (Dole et al. 2011)

Phenomena on all time scales from climate change to weather (including MJO event)
2012 Midwest March Record Warmth (Dole et al. 2014)

Ozone chemistry-climate interactions
2011 Record Spring NAO (Karpechko, Perlwitz et al. 2014)

Snow cover
2013/2014 Upper Midwest Unusual Cold Winter (Wolter et al. 2015, submitted)