High-Resolution Modeling to Understand Flood Risk and Hail Impacts in Future Climates

Kelly Mahoney

Science Review 12-14 May 2015 Boulder, Colorado

Flood risk and decision-making needs

- Will climate change affect flood risk for specific locations, civil/water infrastructure design, operations?
- Can elevation thresholds for storms, flooding, hail change in future?

1976: Big Thompson Canyon and washed out US 34 near Estes Park, CO (elevation: ~8000ft) 145 lives lost

2013: Big Thompson Canyon and washed out US 34 near Estes Park, CO (elevation: ~8000ft) 10 lives lost

X2R: Needed: Climate change information at weather scales

Challenges:

- Users want high-resolution information to inform climate change planning
- Global climate models: Main tool for climate change info...but not designed for simulation of extreme precipitation (resolution, parameterizations)
- How to connect climate-scale questions with weather-scale answers?

X2R: Needed: Climate change information at weather scales

Bureau of Reclamation Dam Safety/Flood Risk Study

- How will climate change affect extreme precipitation in the inter-mountain West?
- Can intense rainfall occur above 7500 ft?
- Common wisdom: all hail
- Current practice:

 Hail at high elevations →
 reduced flood risk →
 reduced dam safety criteria

Select dam failures and fatalities Map courtesy of James S. Halgren, Office of Hydrologic Development, NWS, NOAA

Small hail common in high terrain: Time to melt → slower flood response

X2R: Needed: Climate change information at weather scales

Downscaling method:

- 1. Select extreme cases from regional climate model data
- 2. Create initial conditions for weather model (WRF) simulations
- 3. Execute high-resolution simulations
- 4. Compare past, future high-resolution simulations

NCAR NARCCAP project:

- 3 regional climate model projections used
- Past (1971 2000) vs. Future (2041 2070)
- SRES-A2 scenario

High resolution modeling:

- Storm-resolving
- No cumulus parameterization
- Microphysical detail

Connecting climate and weather scales

24-hour precipitation at regional climate model (RCM) scale (50-km grid spacing)

24-hour precipitation at weather model (WRF) scale (1-km grid spacing)

- Simulated 60+ individual cases at 1-km grid spacing
- Precipitation trends varied across climate model inputs (Mahoney et al. (2013))
- High-resolution output: Can be used for scenario planning, input into impact models (e.g., hydrologic models), to identify and explain climate model errors

Beyond traditional climate model predictors: Hail?

- Future storm simulations: Nearly no surface hail above 7500 ft
- If hail becomes rain, will flood risk increase?

Beyond traditional climate model predictors: Hail?

Instantaneous vertical cross-sections of graupel/hail (kgkg-1, shaded), Melting level (0°C-isotherm; red contour), Terrain height (m, thick brown contour)

20-case average Δ melting level height (m)

- "Future" storms still produce a lot of in-cloud hail
- Height of freezing level increases in future (~400 m difference)
- Surface (small) hail accumulation decreases due to increased melting in warmer future environment

Hail, runoff, and flood risk

- Hydrologic impact of hailturned-rain?
- Coupled atmospherichydrologic modeling framework: WRF-Hydro
- Flood risk/impacts sensitivity testing: hail vs. rain, land cover/ use changes, impact of climate changes
- Applications: Dam safety regulations (national standard?), flood risk evaluation in complex terrain

Summary and Conclusions

Schematic of hail melting and falling instead as rain in a warmer environment

- High-resolution modeling: more realistic treatment of physical processes critical to heavy rainfall, hail
- Climate downscaling experiments: dramatic decrease of high-elevation surface hail
- Present-day hail becoming future rain: enhanced flood risk → decision-maker, stakeholder considerations

Summary and Conclusions

Future work

- Rain vs. hail (or snow) at various elevation thresholds, additional climate scenarios
- Total flood risk: combine traditional atmospheric fields with new coupled hydro-met (e.g., runoff, inundation)
- Effectively communicate relative, combined flash flood uncertainties (atmospheric + hydrologic)

