

Flood Risk Assessment Using In-Situ and Remote Sensing Products: Development of Flash Flood Forecasting System for Puerto Rico

Jean Pierre Valle Rodríguez

Jonathan Muñoz Barreto

University of Puerto Rico Mayagüez Campus

BACKGROUND

- In islands of the Caribbean, floods can occur at any moment throughout the year.
- This can be attributed to the topographic features and weather patterns of a tropical climate.
- Even though any rainfall event can lead to a flood, they are more likely to occur during the hurricane season.
- For Puerto Rico, the Flash Flood Guidance divides the territory in multiple regions and provides a single value for each one of them.

OBJECTIVES

- Implement the Weather and Research Forecasting Hydrological modeling system (WRF-Hydro) for watersheds in Puerto Rico.
- Validate the output of WRF-Hydro for the selected watersheds in Puerto Rico.
- Develop the framework for the application of WRF-Hydro for a Flash Flood Guidance system in Puerto Rico.

DATA ACQUISITION

- Atmospheric and Land Surface Forcing Data:
 - 1. National Weather Service- San Juan
 - 2. Caribbean Coastal Ocean Observing System
 - 3. JPSS Soil Moisture Data (AMSR2)

CARICOOS WIND FORECAST PLIERTO RICO AND US VIRGIN ISLANDS

Operational 1km WRF for Puerto Rico P. Chardon, et al., (2018)

WRF-Hydro Timeline

2018 Progress

January	February	March-April	May	June-July
Joined NOAA- CRESTWRF Research	Meeting with NWS-SJWRF research	 Scope of project defined Started compilation process - Proposal 	Proposal submitted and acceptedCompilation process	 NCAR WRF- Hydro workshop NWC Summer Institute

FALL 2018 SEMESTER GOALS

1

Model Run for each watershed

7

Preliminary validation for one watershed

3

Use different atmospheric forcing data

Other Works: NWC-Summer Institute

• Title:

 Sensitivity of Urban Flooding to Subsurface Storm Drainage Systems in Low-Gradient Watersheds

Description:

 Quantify the sensitivity of hydrologic models to stormwater drainage systems for different return periods.

Authors:

• Jean Valle, Parth Modi, Mahkameh Zarekarizi, Isha Deo

