Arctic Radiometer Modifications

Sara Crepinsek

Special Thanks: Chuck Long, Emiel Hall, Jim Wendell, Rob Albee
Goal(s) of Independent Study

• Investigate previous Storm Peak experiment
• Analyze mitigation strategies
 • Assess how radiometer modifications (i.e. heat and fan) impact measurements
 • Determine what changes should be made to instruments for future research installations to mitigate rime and precipitation events
Agenda

- **Part I**
 - State of the field - Overview
 - Alert station evidence and investigation
 - Experimental radiometer
 - Storm Peak experiment

- **Part II**
 - Independent study experiment
 - Installation details
 - IS experiment results and discussion
 - Future modifications
Part I – Previous Experiments and Overview
- **PSP – Pyranometer/shortwave**
 - Two domes
 - Reduce IR loss
 - *Small* IR loss to sky at night
 - Causes underestimation or negative irradiance signal at night
 - Designed to get rid of IR loss – *smaller* magnitude signal at night
- **PIR – Pyrgeometer/longwave**
 - One dome
 - Reflect sunlight, monitor negative signal
 - *Large* IR loss to sky at night
 - Causes underestimation or negative irradiance signal at night
 - Designed to measure IR emission of the sky – *larger* magnitude signal at night
Historic Rime/Snow Issues at Alert

Photo: Matt Okraszewski

Photo: Sara Crepinsek
Experimental Radiometer On-Site

- Modifications Intact:
 - Modified base plate
 - Modified housing
 - Fan (type unknown)
 - Air intake hosing
- Installed 2014 - 2016
Experimental Radiometer at Alert

After Installation – 2014

Before Disassembly – 2016
Storm Peak Experiment

Photo: Robert Albee
<table>
<thead>
<tr>
<th>Instrument ID#</th>
<th>SPL #6</th>
<th>SPL #5</th>
<th>SPL #4</th>
<th>SPL #3</th>
<th>SPL #2</th>
<th>SPL #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometer Manufacturer</td>
<td>Kipp&Zonen</td>
<td>Kipp&Zonen</td>
<td>Eppley</td>
<td>Eppley</td>
<td>Eppley</td>
<td>Eppley</td>
</tr>
<tr>
<td>Radiometer Model/Type</td>
<td>CM22</td>
<td>CM22</td>
<td>PSP</td>
<td>PIR</td>
<td>PSP</td>
<td>PSP</td>
</tr>
<tr>
<td>Radiometer Serial #</td>
<td>040101</td>
<td>060130</td>
<td>36763F3</td>
<td>34309F3</td>
<td>15953F3</td>
<td>15952F3</td>
</tr>
<tr>
<td>Radiometer Initial Calibration #</td>
<td>8.51×10^6 V/Wm²</td>
<td>9.42×10^6 V/Wm²</td>
<td>8.45×10^6 V/Wm²</td>
<td>3.54×10^6 V/Wm²</td>
<td>10.34×10^6 V/Wm²</td>
<td>9.99×10^6 V/Wm²</td>
</tr>
<tr>
<td>Heater Model/Type</td>
<td>n/a</td>
<td>CV2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Heater Serial #</td>
<td>n/a</td>
<td>060727</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Modified housing (y/n)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Modified base (y/n)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Modified spray cage (y/n)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Fan type (stock, modified, none)</td>
<td>none</td>
<td>stock</td>
<td>GMD stock</td>
<td>modified: ebmpapst VarioPro 3212 J/2HP</td>
<td>none</td>
<td>modified: ebmpapst VarioPro 3212 J/2HP</td>
</tr>
<tr>
<td>Modified fan details</td>
<td>n/a</td>
<td>100 CFM</td>
<td>80 CFM</td>
<td>12V, DC 4, 2A, 50W, 164CFM</td>
<td>n/a</td>
<td>12V, DC 4, 2A, 50W, 164CFM</td>
</tr>
<tr>
<td>Heater type (stock, modified, none)</td>
<td>none</td>
<td>stock</td>
<td>none</td>
<td>modified</td>
<td>modified</td>
<td>modified</td>
</tr>
<tr>
<td>Modified heater details</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>50W heater ring inside case, around dome</td>
<td>none</td>
<td>50W heater ring inside case, around dome</td>
</tr>
<tr>
<td>Blower type (stock, modified, none)</td>
<td>modified</td>
<td>none</td>
<td>none</td>
<td>modified</td>
<td>modified</td>
<td>none</td>
</tr>
<tr>
<td>Modified blower details</td>
<td>option available, but not tested in experiment; AC, 130CFM</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>AC, 130CFM</td>
<td>n/a</td>
</tr>
<tr>
<td>Spray type (stock, modified, none)</td>
<td>none</td>
<td>modified</td>
<td>modified</td>
<td>modified</td>
<td>modified</td>
<td>none</td>
</tr>
<tr>
<td>Modified spray details (provide vertical angle of spray cones at dome)</td>
<td>n/a</td>
<td>yes; 25 degree angle, 45psi</td>
<td>yes; 45 degree angle, 45psi</td>
<td>yes; 65 degree angle, 45psi</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Storm Peak Experiment

• Data from January 26, 2014 – September 11, 2015
 • No details of modification implementation
• Experimental Complications
 • No standard
 • Several modifications per radiometer
 • Not calibrated, not leveled
• Installation Complications
 • One fan installed backward
 • Spray system solution unknown
 • External pump blower broken

Photo: Robert Albee
Part II – Independent Study Experiment
Independent Study (IS) Experiment
October 28 – November 21
<table>
<thead>
<tr>
<th>Instrument ID#</th>
<th>SPL #6</th>
<th>SPL #5</th>
<th>SPL #4</th>
<th>SPL #3</th>
<th>SPL #2</th>
<th>SPL #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometer Manufacturer</td>
<td>Kipp&Zonen</td>
<td>Kipp&Zonen</td>
<td>Eppley</td>
<td>Eppley</td>
<td>Eppley</td>
<td>Eppley</td>
</tr>
<tr>
<td>Radiation Measured</td>
<td>Shortwave Pyranometer</td>
<td>Shortwave Pyranometer</td>
<td>Shortwave Pyranometer</td>
<td>Longwave Pyrogeometer</td>
<td>Shortwave Pyranometer</td>
<td>Shortwave Pyranometer</td>
</tr>
<tr>
<td>Radiometer Model/Type</td>
<td>CM22</td>
<td>CM22</td>
<td>PSP</td>
<td>PIR</td>
<td>PSP</td>
<td>PSP</td>
</tr>
<tr>
<td>Radiometer Serial #</td>
<td>040101</td>
<td>060130</td>
<td>36763F3</td>
<td>34309F3</td>
<td>15953F3</td>
<td>15952F3</td>
</tr>
<tr>
<td>Modified Housing (y/n)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Fan Type (stock, modified, none)</td>
<td>none</td>
<td>stock</td>
<td>GMD stock</td>
<td>emmapast VarioPro 3212 J/2HP</td>
<td>none</td>
<td>emmapast VarioPro 3212 J/2HP</td>
</tr>
<tr>
<td>Modified Fan Details</td>
<td>12V, DC 4, 2A, 50W, 80CFM</td>
<td>100 CFM</td>
<td>80 CFM</td>
<td>12V, DC 4, 2A, 50W, 164CFM</td>
<td>12V, DC 4, 2A, 50W, 80CFM</td>
<td>12V, DC 4, 2A, 50W, 164CFM</td>
</tr>
<tr>
<td>Heater Type (stock, modified, none)</td>
<td>none</td>
<td>stock</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>modified</td>
</tr>
<tr>
<td>Modified Heater Details</td>
<td>none</td>
<td>stock</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>50W heater ring inside case, around dome</td>
</tr>
<tr>
<td>Radiometer Calibration History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IS Experiment Modifications

- Calibrate radiometers, leveled radiometers
- Radiometers placed next to NOAA/GMD standard
- Modifications tested: aspiration type, heat
- Lifted fan and radiometer within the housing
 - Generate more air flow
 - Issues with fan back pressure
- Housing no longer secure to base plate with fan lift
 - Used putty to fill gap between housing and base plate
- Only apply heat to one radiometer (#1 with 164cfm fan)
 - Did not test on #2 with 80cfm fan since not enough air flow to dome
- Did not test spray or blower systems
 - Not feasible for Arctic platforms
 - Spray system introduces spray solution issues: freezing of solution, solution residue, environmental impacts
Aspiration/Fan Analysis

SPL modification:
Limited air intake and expulsion

Base plate air intake

Modified Lift

Modified Lift
Fan Analysis

- **Modified Domes:**
 - Fan aspiration has *large* influence on measurement

- **Traditional Domes:**
 - Fan aspiration has *little* influence on measurement
 - Allows for air flow regardless of fan aspiration

![Graph showing IS Experimental Analysis for Fan Experiment]

- **No Aspiration Time Period**
Overview

- **PSP – Pyranometer/shortwave**
 - Two domes
 - Reduce IR loss
 - Small IR loss to sky at night
 - Causes underestimation or negative irradiance signal at night
 - Designed to get rid of IR loss – smaller magnitude signal

- **PIR – Pyrgeometer/longwave**
 - One dome
 - Reflect sunlight – estimate IR emission of the sky
 - Large IR loss to sky at night
 - Causes underestimation or negative irradiance signal at night
 - Designed to measure IR loss – larger magnitude signal

PSP/PIR relationship

- **PSP can’t completely remove IR loss so…**
 - Use PIR detector signal to correct PSP night time offset
 - Derive night time relationship using the PIR to correct day & night PSP signals
 - Therefore, both instruments should be operated the same way – i.e. apply same mitigation techniques to both the PIR & PSP
 - Difficult to apply correction if instruments not operated in same way
Fan Analysis: PIR standard, PSP modified

164 cfm aspiration
- Linear relationship
 - PIR/PSP operated in similar manor

80 cfm aspiration
- Relationship spreads
 - PIR/PSP operated in slightly different manor

No aspiration
- No relationship
 - PIR/PSP operated in completely different manor

Note: Plots include both “dry” and “moist” modes of relationship between the PSP and PIR
Fan Analysis: PIR & PSP modified

164 cfm aspiration: Linear relationship - PIR/PSP operated in same manor

80 cfm aspiration: Relationship spreads - PIR/PSP operated in slightly different manor

No aspiration: No relationship - PIR/PSP operated in same manor

Note: Plots include both “dry” and “moist” modes of relationship between the PSP and PIR
Fan Analysis: Conclusion

• Need aspiration across dome and within housing
 • Contributes to relationship between PIR detector irradiance and PSP night offset
• Housing and base plate impact relationship & measurement
 • Need to assess flow dynamics of modified housing and base plate
 • Need to address air intake and expulsion
 • Need to assess how air is mixing within the modified housing
Heater Analysis
Heater Analysis

Radiometer #1 Housing vs Dome Temp

Radiometer #2 Housing vs Dome Temp

Radiometer #3 Housing vs Dome Temp

Radiometer #4 Housing vs Dome Temp

Radiometer #5 Housing vs Dome Temp

Radiometer #6 Housing vs Dome Temp

External Housing/Dome Temps
Heater Analysis: Results

- Instrument #1 only, due to airflow
- When heat is applied, dome becomes hotter than housing
- Heat influences system, housing impacts how heat is distributed
- Heat impacts detector irradiance and night offset relationship

Conclusion: Heat **DOES** affect measurement... and it is likely **not** good for the instrument thermopile
Mitigation: Snow day!

#1 164 cfm
#2 80 cfm
#3 164 cfm
#4 Stock E 100 cfm
#5 Stock KZ 80 cfm
#6 80 cfm
Future Modification Recommendations

• New housing, base plate
 • Taller housing to accommodate fan intake and expulsion
 • Base plate needs to allow for more air inflow
• Avoid using heater
 • If heater is used, then use *less* heat than 50W
• Need more airflow/aspiration
 • Allow for more air intake
 • Use DC fans
• Assess flow of modified housings and base plates
• PIR & PSP should have identical modifications applied – otherwise can’t correct for IR loss
Future Analysis

• Overall, radiometers are sensitive to mitigation modifications

• BSRN – Cold Climate Issues Working Group (CCIWG) “bake-off”
 • Winter 2017/2018
 • Assess manufacturer/technician modifications in Arctic conditions
 • Cross-collaboration campaign
References

Institute, D. R. Storm Peak. Retrieved October 4, 2016, from https://www.dri.edu/stormpeak

Thank you!
Fan Analysis: IR Loss Correlated to Aspiration

Fans ON – closer relationship

Fans OFF