Model Evaluation in Central Greenland using a Comprehensive Set of Atmospheric and Surface Measurements

Nathaniel Miller (CU-ATOC, CIRES)
Matthew Shupe, Jan Lenaerts, Jennifer Kay, Ralf Bennartz, Ola Persson
Christopher Cox, David Noone, Von Walden, David Turner, Konrad Steffen

January 18, 2017
ICECAPS
Atmospheric State and Cloud Properties
Shupe et. al. 2013, BAMS

Broadband Radiation
- Swiss Federal Institute (ETH)
- NOAA – Global Monitoring Division

Subsurface temperature, 10m, 2m measurements
- Closing the Isotope Balance at Summit (CIBS)

10m, 2m measurements
- NOAA – Global Monitoring Division
Instrumentation

<table>
<thead>
<tr>
<th>Parameters Measured [≈heights]</th>
<th>Instrument</th>
<th>Project - Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Temperature Profile</td>
<td>Vaisala RS92 Radiosondes</td>
<td>ICECAPS - MSF</td>
</tr>
<tr>
<td>Snow Temperature Profile</td>
<td>Campbell Scientific 107 Temp Probes</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Surface height</td>
<td>Campbell Scientific SR-50A Sonic Ranger</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Temperature [2m, 10m]</td>
<td>Logan RTD - PT139 special order</td>
<td>NOAA/GMD - met tower</td>
</tr>
<tr>
<td></td>
<td>Vaisala HMP 155 Temp probes</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td></td>
<td>Metek USA1 Sonic Anemometers</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Wind Speed [2m, 10m]</td>
<td>Metek USA1 Sonic Anemometers</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td></td>
<td>MetOne 010-CA Cup Anemometers</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Relative Humidity [2m, 10m]</td>
<td>Vaisala HMP 155 RH probes</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Water Vapor Mixing Ratio [2m, 10m]</td>
<td>Picarro L2120 spectrometer</td>
<td>CIBS - 50m tower</td>
</tr>
<tr>
<td>Barometric Pressure</td>
<td>Setra 270</td>
<td>NOAA/GMD - met tower</td>
</tr>
<tr>
<td>LW↓, LW↑</td>
<td>Kipp and Zonen CG4 pyrgeometers</td>
<td>ETH - Radiation Station</td>
</tr>
<tr>
<td></td>
<td>Eppley PIR pyrgeometers</td>
<td>NOAA/GMD - Radiation Station</td>
</tr>
<tr>
<td>SW↓, SW↑</td>
<td>Kipp and Zonen CM22 pyranometers</td>
<td>ETH - Radiation Station</td>
</tr>
<tr>
<td></td>
<td>Kipp and Zonen CM22 pyranometers</td>
<td>NOAA/GMD - Radiation Station</td>
</tr>
<tr>
<td>Liquid Water Path</td>
<td>RPG Microwave Radiometers - HATPRO and HF</td>
<td>ICECAPS - MSF</td>
</tr>
<tr>
<td>Precipitable Water Vapor</td>
<td>RPG Microwave Radiometers - HATPRO and HF</td>
<td>ICECAPS - MSF</td>
</tr>
<tr>
<td>Cloud Occurrence</td>
<td>Millimeter Cloud Radar - 35 GHz</td>
<td>ICECAPS - MSF</td>
</tr>
</tbody>
</table>
Temperature Profiles

![Temperature Profiles Diagram](image)

(a)

(b)
Define a positive flux as warming the surface

\[\text{SEB} = \text{SW}_{\text{down}} - \text{SW}_{\text{up}} + \text{LW}_{\text{down}} - \text{LW}_{\text{up}} + H_{\text{sensible}} + H_{\text{latent}} + C + S \]

All components available for 1 year
July 2013 – June 2014

- **Broadband Radiation** - Swiss Federal Institute (ETH)
- **Sensible heat Flux** - Bulk Aerodynamic method (Persson et. al. 2002, JGR) and Eddy Covariance method
- **Latent Heat Flux** - Gradient 2-level method Stability Functions from Cullen 2003
- **Conductive Heat Flux (C)** - Thermistor String
- **Heat storage (S)** - Thermistor String
Annual Diurnal Cycle

(a) Total Radiative Flux

(b) Sensible Heat Flux

(c) Conductive Heat Flux

(d) Latent Heat Flux

Hour of the Day [UTC]

Month of Year

Wm$^{-2}$
High year round cloud fraction – 86%
- Ice-clouds are important to CRF
- LW CRF magnitude corresponds to the presence of liquid-bearing clouds
Surface albedo important for CRF

Central Greenland is a unique Arctic location

Miller et. al. 2015, J. Climate
Dong et. al. 2010, JGR
Shupe and Intrieri 2004, J. of Climate
Kay and L’Ecuyer 2013, JGR
Influence of Liquid-bearing Clouds and Insolation

Forcing terms

SZA < 70°, ws < 8 m s⁻¹
SZA > 90°, ws < 8 m s⁻¹

(a) Downwelling LW + net SW [W m⁻²]
(b) Surface Temperature [°C]
(c) Upwelling LW [W m⁻²]
(d) Bulk Richardson number
Response to Forcing terms
Response to Forcing terms

[Diagrams showing scatter plots with regression lines and slopes labeled: (a) slope = -1.010, (b) slope = 0.699, (c) slope = -0.101, (d) slope = -0.106, (e) slope = -0.0337.]
Annual responses

![Graph showing annual responses to (LWdown + SWnet)](image)

- LH + SH + C + S - LWup
- SH
- LH
- C
- S
- LWup

July 2013 - June 2014

All available data
SEB responses to CRF

(a) Cloud Radiative Forcing
\((-1.0) \times \text{SH response}\)
\((-1.0) \times \text{LH response}\)
\((-1.0) \times \text{G response}\)
\text{LWup response}

(b)
Forcing

LWdn + SWnet [W m$^{-2}$]

Albedo [SWup/SWdn]

ERA-I
ERA-I: 1year
Obs: 1year
Obs

LWP [g m$^{-2}$]
Community Earth System Model
Beta07 – CAM6, CLM5

LH + SH + G - LWup
SH
LH
G
-LWup

Obs: July 2013 - June 2014
Obs: All available
CESM: 1-year

Response of energy flux(es) to (LWdown + SWnet)

Month
J F M A M J J A S O N D
Climate Forecast System Reanalysis

![Graph showing response of energy fluxes to LWdown + SWnet

- LH + SH + G - LWup
- SH
- LH
- G
- LWup

Observations: All available

Respons of energy fluxes to LWdown + SWnet

Month: J F M A M J J A S O N D

Values: -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Graph represents the response of energy fluxes to LWdown + SWnet for different variables over time, with observations from all available sources and CFSR data from January 2011 to October 2016.
Conclusions

• Highly emissive GIS corresponds to a large response of the surface temperature
 – Strong radiative cooling under clear skies
 – Clouds can induce a warming of the surface on the same order as that of insolation due to the GIS being highly reflective in the shortwave

• Response of the non radiative SEB terms
 – Ground heat flux is the largest response
 – SH flux response is fairly constant throughout the annual cycle.
 – LH flux response is largest in the summer

• Process-based relationships indicate where there are deficiencies in representing GIS surface temperature variability.

• Data available - https://arcticdata.io/catalog/#view/doi:10.18739/A2Z37J
Thank you

- This research is supported by the National Science Foundation under grants PLR1303879 and PLR1314156.

- David Noone’s project - Closing the Isotope Balance at Summit (CIBS)

- The Swiss Federal Institute (ETH) provided the ETH broadband radiometer measurements.

- Additional broadband radiation measurements, and near-surface meteorological tower data are provided by the National Oceanic and Atmospheric Administration’s Global Monitoring Division.

- Thanks to Polar Field Services and the various science technicians for their excellent support of the field experiments at Summit Station.