Publications
Cox, C.J., M. Gallagher, M.D. Shupe, P.O.G. Persson, A. Solomon, T. Ayers, B. Blomquist, I. Brooks, D. Costa, A. Grachev, D. Gottas, J. Hutchings, M. Kutchenreiter, J. Leach, S.M. Morris, V. Morris, J. Osborn, S. Pezoa, A. Preusser, L. Riihimaki, and T. Uttal (2022): Continuous observations of the surface energy budget and meteorology over Arctic sea ice during MOSAiC. Nature Scientific Data., in press, https://doi.org/10.1038/s41597-023-02415-5
Guy, H., I.M. Brooks, D.D. Turner, C.J. Cox, P.M. Rowe, M.D. Shupe, K. Carslaw, V.P. Walden, and R.R. Neely III (2023): Observations of fog-aerosol interactions over central Greenland. Journal of Geophysical Research – Atmospheres, 128(13), e2023JD038718, https://doi.org/10.1029/2023JD038718
Adler, B., J. Wilczak, L. Bianco, L. Bariteau, C.J. Cox, G. de Boer, I. Djalalova, M. Gallagher, J.M. Intrieri, T. Meyers, T. Meyers, J.B. Olson, S. Pezoa, J. Sedlar, E. Smith, D.D. Turner, and A. White (2023). Passive remote sensing of the atmospheric boundary layer in Colorado’s East River Valley during the seasonal change from snow-free to snow-covered ground. Journal of Geophysical Research – Atmospheres, 128(12), e2023JD038497, https://doi.org/10.1029/2023JD038497
Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, M. Webster, M.D. Shupe, C. Cox, and J. Cassano (2023). On relationships between summertime surface albedo and melt pond fraction in the central Arctic Ocean, Elementa Science of the Anthropocene, 11(1), 00001 https://doi.org/10.1525/elementa.2023.00001
Clemens-Sewall, D., C. Polashenski, M.M. Frey, C.J. Cox, M.A. Granskog, A. Macfarlane, S.W. Fons, J. Schmale, J.K. Hutchings, L. von Albedyll, and D. Perovich (2023): Snow loss into leads in Arctic sea ice: Minimal in typical wintertime conditions, but high in exceptional conditions. Geophysical Research Letters, 50(12), e2023GL102816, https://doi.org/10.1029/2023GL102816
Oehri, J., G., and coauthors (inc. C.J. Cox) (2022): Vegetation type is an important predictor of the Arctic summer land surface energy budget. Nature Communications, 13, 6379, https://doi.org/10.1038/s41467-022-34049-3.
Lee, C., M. DeGrandpre, J. Guthrie, V. Hill, R. Kwok, J. Morison, C. Cox, H. Singh, T. Stanton, J. Wilkinson (2022): Emerging technologies for observing the Arctic Ocean. Oceanography, 35(3-4), https://doi.org/10.5670/oceanog.2022.127.
O’Connor, R.S., A. Le Pogam, K.G. Young, F. Robitaille, O.P. Love, K.H. Elliot, A.L. Hargreaves, E.S. Choy, D. Berteauz, A. Tam, F. Vézina, and C. Cox (2022): Warming in the land of the midnight sun: breeding birds may suffer greater heat stress at high- vs low-Arctic sites. Proceedings of the Royal Soc. B., 289, 20220300, https://doi.org/10.1098/rspb.2022.0300
de Boer, G., R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preusser, and B. Argrow (2022): Observing the central Arctic atmosphere and surface with University of Colorado Uncrewed Aircraft Systems. Nature Scientific Data., 9, 439, https://doi.org/10.1038/s41597-022-01526-9
Wagner, D.N., M.D. Shupe, C. Cox, O.G. Persson, T. Uttal, M.M. Frey, A. Kirchgaessner, M. Schneebeli, M. Jaggi, A.R. Macfarlane, P. Itkin, S. Arndt, S. Hendricks, D. Krampe, M. Nicolaus, R. Ricker, J. Regnery, N. Kolabutin, E. Shimanshuck, M. Oggier, I. Raphael, J. Stroeve, and M. Lehning (2022): Snowfall and snow accumulation processes during the MOSAiC winter and spring season. The Cryosphere, 16, 2373-2402, https://doi.org/10.5194/tc-16-2372-2022
de Boer, G., S. Borenstein, R. Calmer, C. Cox, M. Rhodes, C. Choate, J. Hamilton, J. Osborn, D. Lawrence, B. Argrow, and J. Intrieri (2022): Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC. Earth System Science Data, 14, 19-31, https://doi.org/10.5194/essd-14-19-2022
Shupe, M.D. and coauthors (inc. C.J. Cox) (2021): Overview of the MOSAiC Expedition – Atmosphere, Elementa Science of the Anthropocene. 10, 00060, https://doi.org/10.1525/elementa.2021.00060
Guy, H., I.M. Brooks, K.S. Carslaw, B.J. Murray, V.P. Walden, M.D. Shupe, C. Pettersen, D.D. Turner, C.J. Cox, W.D. Neff, R. Bennartz, and R.R. Neely (2021): Controls on the surface aerosol number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics, 21, 15351-15374, https://doi.org/acp-2021-0491
Cox, C.J., S.M. Morris, T. Uttal, R. Burgener, E. Hall, M. Kutchenreiter, A. McComiskey, C.N. Long, B.D. Thomas and J. Wendell, The De-Icing Comparison Experiment (2021): A study of broadband radiometric measurement under icing conditions in the Arctic. Atmospheric Measurement Techniques, 14, 1205-1224, https://doi.org/10.5194/amt-14-1205-2021
Blanchard, Y., J. Pelon, C.J. Cox, J. Delanoë, E. Eloranta, K.P. Moran and T. Uttal (2021): Comparison of TOA and BOA LW radiation fluxes inferred from ground-based sensors, A-Train satellite observations and ERA reanalyses at the High Arctic Station Eureka over the 2002 to 2020 period, Journal of Geophysical Research – Atmospheres. 126, e2020JD033615, https://doi.org/10.1029/2020JD033615
Cox, C.J., R. Stone, D. Douglas, D. Stanitski, and M. Gallagher (2019): The Aleutian Low – Beaufort Sea Anticyclone: A climate index correlated with seasonal melt in the Pacific Arctic cryosphere. Geophysical Research Letters, 46, GRL59183, https://doi.org/10.1029/2019GL083306
de Boer, G., C.J. Cox, and J. Creamean (2019): Accelerated springtime melt of northern Alaska river systems resulting from niveo-aeolian deposition events. Arctic, 72, 245-257, https://doi.org/10.14430/arctic68654
Cox, C.J., D.C. Noone, M. Berkelhammer, M.D. Shupe, W.D. Neff, N.B. Miller, V.P. Walden, and K. Steffen (2019): Supercooled liquid fogs over the central Greenland ice sheet. Atmospheric Chemistry and Physics, 19, 7467-7485, https://doi.org/10.5194/acp-19-7467-2019
Solomon, A., G. de Boer, J. Creamean, A. McComiskey, M. Shupe, M. Maahn, and C.J. Cox (2018): The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase-partitioning in Arctic Mixed-Phase Stratocumulus Clouds. Atmospheric Chemistry and Physics, 18, 17047-17059, https://doi.org/10.5194/acp-18-17047-2018
Tremblay, S., J.-C. Picard, J.O. Bachelder, E. Lutsch, K. Strong, P. Fogal, W.R. Leatch, S. Sharma, F. Kolonjari, C.J. Cox, R.Y.-W. Chang, and P.L. Hayes (2018): Characterization of aerosol growth events over Ellesmere Island during the summers of 2015 and 2016. Atmospheric Chemistry and Physics, 19, 5589-5604, https://doi.org/10.5194/acp-19-5589-2019
Driemel, A. and co-authors (inc. C.J. Cox) (2018): Baseline Surface Radiation Network (BSRN): Structure and data description (1992-2017). Earth System Science Data, 10, 1491-1501, https://doi.org/10.5194/essd-10-1491-2018
Hartten, L.M., C.J. Cox, P.E. Johnston, and D.E. Wolfe (2018): Ship- and island-based soundings from the 2016 El Niño Rapid Response field campaign. Earth System Science Data, 10, 1165-1183, https://doi.org/10.5194/essd-10-1165-2018
Mungall, E.L., J.P.D. Abbatt, J.J.B. Wentzell, G.R. Wentworth, J.G. Murphy, D. Kunkel, E. Gute, D.W. Tarasick, S. Sharma, C.J. Cox, T. Uttal, and J. Liggio (2018): High gas-phase mixing ratios of formic and acetic acid in the High Arctic. Atmospheric Chemistry and Physics, 18, 10237-10254, https://doi.org/10.5194/acp-2018-10237-2018
Hartten, L.M., C.J. Cox, P.E. Johnston, D.E. Wolfe, D.E. Abbott, and H.A. McColl (2017): Central-Pacific surface meteorology from the 2016 El Niño Rapid Response (ENRR) field campaign. Earth System Science Data, 10, 1139-1164, https://doi.org/10.5194/essd-10-1139-2018
Dole, R. and coauthors (inc. C.J. Cox) (2018): Advancing Science and Services during the 2015-16 El-Niño: The NOAA El-Niño Rapid Response Field Campaign. Bulletin of the American Meteorological Society, 99, 975-1001, https://doi.org/10.1175/BAMS-D-16-0219.1
Grachev, A., P.O.G. Persson, T. Uttal, E.A. Akish, C.J. Cox, S.M. Morris, C.W. Fairall, R.S. Stone, G. Lesins, A.P. Makshtas, and I.A. Repina (2017): Seasonal and latitudinal variations of surface fluxes at Arctic terrestrial sites. Climate Dynamics, 51, 1793-1818, https://doi.org/10.1007/s00382-017-3983-4
Cox, C.J., R.S. Stone, D. Stanitski, D. Douglas, G. Divoky, G. Dutton, C. Sweeney and C. George, (2017): Drivers and environmental responses to the changing annual snow cycle of northern Alaska. Bulletin of the American Meteorological Society, 98, 2559-2577, https://doi.org/10.1175/BAMS-D-16-0201.1
Miller, N., M. Shupe, C.J. Cox, D. Noone, P.O.G. Persson, and K. Steffen, (2017): Surface energy budget responses to radiative forcing at Summit, Greenland. The Cryosphere, 11, 497-516, https://doi.org/10.5194/tc-2016-206
Rowe, P.M., S.P. Neshyba, C.J. Cox, and V.P. Walden, (2016): Towards autonomous surface-based infrared remote sensing of polar clouds: Cloud height retrievals. Atmospheric Measurement Techniques, 9, 3641-3659, https://doi.org/10.5194/amt-2016-49
Cox, C.J., T. Uttal, C.N. Long, M.D. Shupe, R.S. Stone, and S. Starkweather, (2016): The role of springtime Arctic clouds in determining autumn sea ice extent. Journal of Climate, 29, 6581-6596, https://doi.org/10.1175/JCLI-D-16-0136.1
Cox, C.J., P.M. Rowe and V.P. Walden, (2016): A synthetic data set of high-spectral resolution infrared spectra for the Arctic atmosphere. Earth System Science Data, 8, 199-211, https://doi.org/10.5194/essd-8-199-2016
Berkelhammer, M., D. Noone, H.C. Steen-Larson, M. O’Neill, A. Bailey, C. Cox, D. Schneider, K. Steffen, and J.C. White, (2016): Surface-atmosphere decoupling limits accumulation over Greenland. Science Advances, 2, e1501704, https://doi.org/10.1126/sciadv.1501704
Cox, C.J., V.P. Walden, P.M. Rowe, and M.D. Shupe, (2015): Humidity trends imply increased sensitivity to clouds in a warming Arctic. Nature Communications, 6, 1-8, https://doi.org/10.1038/ncomms10117
Uttal, T. and coauthors (inc. C.J. Cox), (2015): International Arctic Systems for Observing the Atmosphere (IASOA): An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 97, 1033-1056, https://doi.org/10.1175/BAMS-D-14-00145.1
Miller, N., M. Shupe, C.J. Cox, V.P. Walden, and K. Steffen, (2015): Cloud Radiative Forcing at Summit, Greenland. Journal of Climate, 28, 6267-6280, https://doi.org/10.1175/JCLI-D-15-0076.1
Miller, B., C.J. Cox, R.J. Hougham, V.P. Walden, K.B. Eitel, and A. Albano, (2015): Adventure Learning as a curricular approach that transcends geographies and connects people to place. The Curriculum Journal, 26(2), 290-312, https://doi.org/10.1080/09585176.2015.1043925
Murray, B.J., C.G. Salzmann, A.J. Heymsfield, S. Dobbie, R.R. Neely III, and C.J. Cox, (2015): Trigonal ice crystals in Earth’s atmosphere. Bulletin of the American Meteorological Society, 96, 1519-1531, https://doi.org/10.1175/BAMS-D-13-00128.1
Cox, C.J., V.P. Walden, G.P. Compo, P.M. Rowe, M.D. Shupe, and K. Steffen, (2014): Wavelet analysis of downwelling longwave flux and cloud radiative forcing from surface observations and ERA-Interim over Summit, Greenland. Journal of Geophysical Research, 119(21), 12317-12337, https://doi.org/10.1002/2014JD021975
Overland, J., J. Key, E. Hanna, I. Hanssen-Bauer, B.-M. Kim, S.-J. Kim, J. Walsh, M. Wang, U. Bhatt, Y. Liu, R. Stone, C. Cox, and V. Walden, (2014): [The Arctic], The lower atmosphere: air temperature, clouds and surface radiation, [in “State of the Climate in 2013”]. Bulletin of the American Meteorological Society, 95(4), S115-S117
Cox, C.J., D.D. Turner, V.P. Walden, M. Shupe, and P.M. Rowe, (2014): Cloud microphysical properties retrieved from downwelling infrared radiance measurements made at Eureka, Nunavut, Canada 2006-2009. Journal of Applied Meteorology and Climatology, 53, 772-790, https://doi.org/10.1175/JAMC-D-13-0113.1
Bennartz, R., M.D. Shupe, D.D. Turner, V.P. Walden, K. Steffen, C.J. Cox, M.S. Kulie, N.B. Miller, C. Pettersen, (2013): July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83-86. https://doi.org/10.1038/nature12002
Shupe, M.D., D.D. Turner, V.P. Walden, R. Bennartz, M.P. Caddedu, B.B. Castellani, C.J. Cox, D.R. Hudak, M.S. Kulie, N.B. Miller, R.R. Neely III, W.D. Neff, and P.M. Rowe, (2013): High and Dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94, 169-186, https://doi.org/10.1175/BAMS-D-11-00249.1
Cox, C.J., V.P. Walden, and P.M. Rowe, (2012): A comparison of the atmospheric conditions over Eureka, Canada and Barrow, Alaska (2006-2008). Journal of Geophysical Research - Atmospheres, 117, D12204, https://doi.org/10.1029/2011JD017164
Mariani, Z., K. Strong, M. Wolff, P. Rowe, V. Walden, P.F. Fogal, T. Duck, G. Lesins, D.S. Turner, C. Cox, E. Eloranta, J.R. Drummond, C. Roy, D.D. Turner, D. Hudak, and I.A. Lindenmaier, (2011): Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers. Atmospheric Measurement Techniques, 5, 329-344, https://doi.org/10.5194/amtd-329-2012
Rowe, P.M., S. Neshyba, C. Cox, V. Walden, (2011): A responsivity-based criterion for accurate calibration of FTIR emission spectra: Identification of in-band low-responsivity wavenumbers. Optics Express, 16, 1050-1055, https://doi.org/10.1364/OE.19.005930
Published Data Sets
Maahn, M., C.J. Cox, M. Gallagher, J. Hutchings, M.D. Shupe, and T. Uttal. (2023) Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.960391
Lanconelli, C. et al. (inc C. Cox). (2023). Baseline surface radiation data snapshot 2023-03-31. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.957398
Jozef, G., R. Klingel, J.J. Cassano, B. Maronga, G. de Boer, S. Dahlke, and C.J. Cox (2023). Lower atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.957760
Cox, C.J. et al. (2023). Met City meteorological and surface flux measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2TM7227K
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #30 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2K649V1f
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #40 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A29P2W74F
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #50 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2251FM5R
Cox, C.J. et al. (2023). Met City meteorological and surface flux measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2PV6B83F
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #30 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2FF3M18K
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #40 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A25X25F0P
Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #50 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2XD0R00S
Oehri, J. et al. (inc. C.J. Cox) (2022), Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites. PANGEA https://doi.org/10.5194/PANGEA.949792, https://doi.org/10.5194/PANGEA.949764, https://doi.org/10.5194/PANGEA.949789, https://doi.org/10.5194/PANGEA.949791
Pirazzini, R., H. Henna-Reeta, M.D. Shupe, T. Uttal, C.J. Cox, D. Costa, P.O.G. Persson, and Z. Brasseur (2022), Upward and downward broadband shortwave and longwave irradiance and downward diffuse and direct solar partitioning during the MOSAiC expedition. PANGEA https://doi.org/10.5194/PANGEA.952359
Smith, C. and Cox, C. (updated daily) PSL Download Climate Timeseries: ALBSA: Aleutian Low - Beaufort Sea Anticyclone. NOAA PSL. https://psl.noaa.gov/data/timeseries/ALBSA/
Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, C. Cox, B. Argrow, and J. Cassano (2022): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign, A0 level data. Arctic Data Center. https://doi.org/10.18739/A2G44HR8B
Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, S. Borenstein, C. Cox, B. Argrow, and J. Cassano (2021): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate campaign, A1 level data. Arctic Data Center. https://doi.org/10.18739/A2697000S
Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, S. Borenstein, C. Cox, B. Argrow, and J. Cassano (2021): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Campaign. Arctic Data Center. https://doi.org/10.18739/A22J6857H
Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): 10-meter (m) meteorological flux tower measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A2VM42Z5F
Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): Atmospheric Surface Flux Station #30 measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A20C4SM1J
Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): Atmospheric Surface Flux Station #50 measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A2445HD46
Bliss, A. and co-authors (inc. C. Cox) (2021): Raw files for sea ice drift tracks from the Distributed Network of autonomous buoys deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition 2019 - 2021. Arctic Data Center. https://doi.org/10.18739/A2KD1QM54
Bliss, A. and co-authors (inc. C. Cox) (2021): Sea ice drift tracks from the Distributed Network of autonomous buoys deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition 2019 - 2021. Arctic Data Center. https://doi.org/10.18739/A2Q52FD8S
Cox, C.J. and D. Halliwell (2021): Basic measurements of radiation at station Alert (2004-08 – 2014-06). (119 data sets) AeroCan, Wilcox, PANGEA, https://doi.org/10.1594/PANGAEA.932867
Cox, C. (2020): De-Icing Comparison Experiment (D-ICE) campaign data: Radiometric and icing condition observations from the NOAA Barrow Atmospheric Baseline Observatory, August 2017–July 2018 (NCEI Accession 0209059), NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/0209059
Cox, C. (2020): De-Icing Comparison Experiment (D-ICE) campaign data: Best-estimate downwelling longwave and shortwave radiometric fluxes from the NOAA Barrow Atmospheric Baseline Observatory, August 2017–July 2018 (NCEI Accession 0209058), NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/0209058
Cox, C., McComiskey, A., and Morris, S. (2019): Webcam images of OLI and NSA SKYRAD. U.S. Dept. of Energy (DoE) Atmospheric Radiation Measurement (ARM) Data Center. https://doi.org/10.5439/1507148
de Boer, G., Osborn, J., Cox, C., Intrieri, J., Borenstein, S., Dixon, C., and Foscue, G. (2019): miniFlux data from Stratified Ocean Dynamics of the Arctic (SODA) campaign, Beaufort Sea and northern Alaska, 2018. Arctic Data Center. https://doi.org/10.18739/A2SJ19R18
Noone, D. and Cox, C. (2019): Closing the Isotope Hydrology at Summit: Measurements of Source Regions, Precipitation and Post-deposition Processes, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A28K74W5W
Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: Meteorological Particle Spectrometers (MPS) 10, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2ZC7RT81
Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: Meteorological Particle Spectrometers (MPS) 02, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2348GG4H
Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: FM (Fog Monitor) 10, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A26W9688B
Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: FM (Fog Monitor) 02, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2BN9X32Q
Driemel, A. and coauthors (inc. C.J. Cox): Baseline Surface Radiation Data (1992-2017). PANGAEA. https://doi.org/10.1594/PANGAEA.880000
Noone, D.C., Cox, C.J., Berkelhammer, M., and O’Neill, M. (2018): Tower meteorology at multiple heights and snow temperature, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2WW76Z78
Cox, C. and Harrten, L.M. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Fluxes from NOAA Ship Ronald H. Brown, 2016-02 to 2016-03 (NCEI Accession 0167875), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v58050vp
Hartten, L., Johnston, P., Cox, C., and Wolfe, D. (2017): El Niño Rapid Response (ENRR) Field Campaign: Radiosonde Data (Level 2) from Kiritimati Island, January-March 2016 (NCEI Accession 0161525), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v55q4t5k
Hartten, L., Johnston, P., Cox, C., and Wolfe, D. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological Data from Kiritimati Island, January-March 2016 (NCEI Accession 0161526), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v51z42h4
Cox, C., Wolfe, D., Hartten, L., and Johnston, P. (2017): El Niño Rapid Response (ENRR) Field Campaign: Radiosonde Data (Level 2) from the NOAA Ship Ronald H. Brown, February-March 2016 (NCEI Accession 0161527), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v5x63k15
Cox, C., Wolfe, D., Hartten, L., and Johnston, P. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological and Ship Data from the NOAA Ship Ronald H. Brown, February-March 2016 (NCEI Accession 0161528). NOAA National Centers for Environmental Information. https://doi.org/10.7289/v5sf2t80
Cox, C., Rowe, P. and Walden, V.P. (2015): Simulated Spectra for Autonomous Arctic Infrared Observer. Arctic Data Center. https://doi.org/10.5065/D61J97TT