Publications


Cox, C.J., M. Gallagher, M.D. Shupe, P.O.G. Persson, A. Solomon, T. Ayers, B. Blomquist, I. Brooks, D. Costa, A. Grachev, D. Gottas, J. Hutchings, M. Kutchenreiter, J. Leach, S.M. Morris, V. Morris, J. Osborn, S. Pezoa, A. Preusser, L. Riihimaki, and T. Uttal (2022): Continuous observations of the surface energy budget and meteorology over Arctic sea ice during MOSAiC. Nature Scientific Data., in press, https://doi.org/10.1038/s41597-023-02415-5 

 

Guy, H., I.M. Brooks, D.D. Turner, C.J. Cox, P.M. Rowe, M.D. Shupe, K. Carslaw, V.P. Walden, and R.R. Neely III (2023): Observations of fog-aerosol interactions over central Greenland. Journal of Geophysical Research – Atmospheres, 128(13), e2023JD038718, https://doi.org/10.1029/2023JD038718 

 

Adler, B., J. Wilczak, L. Bianco, L. Bariteau, C.J. Cox, G. de Boer, I. Djalalova, M. Gallagher, J.M. Intrieri, T. Meyers, T. Meyers, J.B. Olson, S. Pezoa, J. Sedlar, E. Smith, D.D. Turner, and A. White (2023). Passive remote sensing of the atmospheric boundary layer in Colorado’s East River Valley during the seasonal change from snow-free to snow-covered ground. Journal of Geophysical Research – Atmospheres, 128(12), e2023JD038497, https://doi.org/10.1029/2023JD038497 

 

Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, M. Webster, M.D. Shupe, C. Cox, and J. Cassano (2023). On relationships between summertime surface albedo and melt pond fraction in the central Arctic Ocean, Elementa Science of the Anthropocene, 11(1), 00001 https://doi.org/10.1525/elementa.2023.00001  

 

Clemens-Sewall, D., C. Polashenski, M.M. Frey, C.J. Cox, M.A. Granskog, A. Macfarlane, S.W. Fons, J. Schmale, J.K. Hutchings, L. von Albedyll, and D. Perovich (2023): Snow loss into leads in Arctic sea ice: Minimal in typical wintertime conditions, but high in exceptional conditions. Geophysical Research Letters, 50(12), e2023GL102816, https://doi.org/10.1029/2023GL102816  

 

Oehri, J., G., and coauthors (inc. C.J. Cox) (2022): Vegetation type is an important predictor of the Arctic summer land surface energy budget. Nature Communications, 13, 6379, https://doi.org/10.1038/s41467-022-34049-3.

 

Lee, C., M. DeGrandpre, J. Guthrie, V. Hill, R. Kwok, J. Morison, C. Cox, H. Singh, T. Stanton, J. Wilkinson (2022): Emerging technologies for observing the Arctic Ocean. Oceanography, 35(3-4), https://doi.org/10.5670/oceanog.2022.127.

 

O’Connor, R.S., A. Le Pogam, K.G. Young, F. Robitaille, O.P. Love, K.H. Elliot, A.L. Hargreaves, E.S. Choy, D. Berteauz, A. Tam, F. Vézina, and C. Cox (2022): Warming in the land of the midnight sun: breeding birds may suffer greater heat stress at high- vs low-Arctic sites. Proceedings of the Royal Soc. B., 289, 20220300, https://doi.org/10.1098/rspb.2022.0300

 

de Boer, G., R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preusser, and B. Argrow (2022): Observing the central Arctic atmosphere and surface with University of Colorado Uncrewed Aircraft Systems. Nature Scientific Data., 9, 439, https://doi.org/10.1038/s41597-022-01526-9

 

Wagner, D.N., M.D. Shupe, C. Cox, O.G. Persson, T. Uttal, M.M. Frey, A. Kirchgaessner, M. Schneebeli, M. Jaggi, A.R. Macfarlane, P. Itkin, S. Arndt, S. Hendricks, D. Krampe, M. Nicolaus, R. Ricker, J. Regnery, N. Kolabutin, E. Shimanshuck, M. Oggier, I. Raphael, J. Stroeve, and M. Lehning (2022): Snowfall and snow accumulation processes during the MOSAiC winter and spring season. The Cryosphere, 16, 2373-2402, https://doi.org/10.5194/tc-16-2372-2022

 

de Boer, G., S. Borenstein, R. Calmer, C. Cox, M. Rhodes, C. Choate, J. Hamilton, J. Osborn, D. Lawrence, B. Argrow, and J. Intrieri (2022): Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC. Earth System Science Data, 14, 19-31, https://doi.org/10.5194/essd-14-19-2022

 

Shupe, M.D. and coauthors (inc. C.J. Cox) (2021): Overview of the MOSAiC Expedition – Atmosphere, Elementa Science of the Anthropocene. 10, 00060, https://doi.org/10.1525/elementa.2021.00060

 

Guy, H., I.M. Brooks, K.S. Carslaw, B.J. Murray, V.P. Walden, M.D. Shupe, C. Pettersen, D.D. Turner, C.J. Cox, W.D. Neff, R. Bennartz, and R.R. Neely (2021): Controls on the surface aerosol number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics, 21, 15351-15374, https://doi.org/acp-2021-0491

 

Cox, C.J., S.M. Morris, T. Uttal, R. Burgener, E. Hall, M. Kutchenreiter, A. McComiskey, C.N. Long, B.D. Thomas and J. Wendell, The De-Icing Comparison Experiment (2021): A study of broadband radiometric measurement under icing conditions in the Arctic. Atmospheric Measurement Techniques, 14, 1205-1224, https://doi.org/10.5194/amt-14-1205-2021

 

Blanchard, Y., J. Pelon, C.J. Cox, J. Delanoë, E. Eloranta, K.P. Moran and T. Uttal (2021): Comparison of TOA and BOA LW radiation fluxes inferred from ground-based sensors, A-Train satellite observations and ERA reanalyses at the High Arctic Station Eureka over the 2002 to 2020 period, Journal of Geophysical Research – Atmospheres. 126, e2020JD033615, https://doi.org/10.1029/2020JD033615

 

Cox, C.J., R. Stone, D. Douglas, D. Stanitski, and M. Gallagher (2019): The Aleutian Low – Beaufort Sea Anticyclone: A climate index correlated with seasonal melt in the Pacific Arctic cryosphere. Geophysical Research Letters, 46, GRL59183, https://doi.org/10.1029/2019GL083306 

 

de Boer, G., C.J. Cox, and J. Creamean (2019): Accelerated springtime melt of northern Alaska river systems resulting from niveo-aeolian deposition events. Arctic, 72, 245-257, https://doi.org/10.14430/arctic68654

 

Cox, C.J., D.C. Noone, M. Berkelhammer, M.D. Shupe, W.D. Neff, N.B. Miller, V.P. Walden, and K. Steffen (2019): Supercooled liquid fogs over the central Greenland ice sheet. Atmospheric Chemistry and Physics, 19, 7467-7485, https://doi.org/10.5194/acp-19-7467-2019 

 

Solomon, A., G. de Boer, J. Creamean, A. McComiskey, M. Shupe, M. Maahn, and C.J. Cox (2018): The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase-partitioning in Arctic Mixed-Phase Stratocumulus Clouds. Atmospheric Chemistry and Physics, 18, 17047-17059, https://doi.org/10.5194/acp-18-17047-2018 

 

Tremblay, S., J.-C. Picard, J.O. Bachelder, E. Lutsch, K. Strong, P. Fogal, W.R. Leatch, S. Sharma, F. Kolonjari, C.J. Cox, R.Y.-W. Chang, and P.L. Hayes (2018): Characterization of aerosol growth events over Ellesmere Island during the summers of 2015 and 2016. Atmospheric Chemistry and Physics, 19, 5589-5604, https://doi.org/10.5194/acp-19-5589-2019 

 

Driemel, A. and co-authors (inc. C.J. Cox) (2018): Baseline Surface Radiation Network (BSRN): Structure and data description (1992-2017). Earth System Science Data, 10, 1491-1501, https://doi.org/10.5194/essd-10-1491-2018 

 

Hartten, L.M., C.J. Cox, P.E. Johnston, and D.E. Wolfe (2018): Ship- and island-based soundings from the 2016 El Niño Rapid Response field campaign. Earth System Science Data, 10, 1165-1183, https://doi.org/10.5194/essd-10-1165-2018 

 

Mungall, E.L., J.P.D. Abbatt, J.J.B. Wentzell, G.R. Wentworth, J.G. Murphy, D. Kunkel, E. Gute, D.W. Tarasick, S. Sharma, C.J. Cox, T. Uttal, and J. Liggio (2018): High gas-phase mixing ratios of formic and acetic acid in the High Arctic. Atmospheric Chemistry and Physics, 18, 10237-10254, https://doi.org/10.5194/acp-2018-10237-2018 

 

Hartten, L.M., C.J. Cox, P.E. Johnston, D.E. Wolfe, D.E. Abbott, and H.A. McColl (2017): Central-Pacific surface meteorology from the 2016 El Niño Rapid Response (ENRR) field campaign. Earth System Science Data, 10, 1139-1164, https://doi.org/10.5194/essd-10-1139-2018 

 

Dole, R. and coauthors (inc. C.J. Cox) (2018): Advancing Science and Services during the 2015-16 El-Niño: The NOAA El-Niño Rapid Response Field Campaign. Bulletin of the American Meteorological Society, 99, 975-1001, https://doi.org/10.1175/BAMS-D-16-0219.1 

 

Grachev, A., P.O.G. Persson, T. Uttal, E.A. Akish, C.J. Cox, S.M. Morris, C.W. Fairall, R.S. Stone, G. Lesins, A.P. Makshtas, and I.A. Repina (2017): Seasonal and latitudinal variations of surface fluxes at Arctic terrestrial sites. Climate Dynamics, 51, 1793-1818, https://doi.org/10.1007/s00382-017-3983-4 

 

Cox, C.J., R.S. Stone, D. Stanitski, D. Douglas, G. Divoky, G. Dutton, C. Sweeney and C.  George, (2017): Drivers and environmental responses to the changing annual snow cycle of northern Alaska. Bulletin of the American Meteorological Society, 98, 2559-2577, https://doi.org/10.1175/BAMS-D-16-0201.1 

 

Miller, N., M. Shupe, C.J. Cox, D. Noone, P.O.G. Persson, and K. Steffen, (2017): Surface energy budget responses to radiative forcing at Summit, Greenland. The Cryosphere, 11, 497-516, https://doi.org/10.5194/tc-2016-206 

 

Rowe, P.M., S.P. Neshyba, C.J. Cox, and V.P. Walden, (2016): Towards autonomous surface-based infrared remote sensing of polar clouds: Cloud height retrievals. Atmospheric Measurement Techniques, 9, 3641-3659, https://doi.org/10.5194/amt-2016-49 

 

Cox, C.J., T. Uttal, C.N. Long, M.D. Shupe, R.S. Stone, and S. Starkweather, (2016): The role of springtime Arctic clouds in determining autumn sea ice extent. Journal of Climate, 29, 6581-6596, https://doi.org/10.1175/JCLI-D-16-0136.1 

 

Cox, C.J., P.M. Rowe and V.P. Walden, (2016): A synthetic data set of high-spectral resolution infrared spectra for the Arctic atmosphere. Earth System Science Data, 8, 199-211, https://doi.org/10.5194/essd-8-199-2016 

 

Berkelhammer, M., D. Noone, H.C. Steen-Larson, M. O’Neill, A. Bailey, C. Cox, D. Schneider, K. Steffen, and J.C. White, (2016): Surface-atmosphere decoupling limits accumulation over Greenland. Science Advances, 2, e1501704, https://doi.org/10.1126/sciadv.1501704 

 

Cox, C.J., V.P. Walden, P.M. Rowe, and M.D. Shupe, (2015): Humidity trends imply increased sensitivity to clouds in a warming Arctic. Nature Communications, 6, 1-8, https://doi.org/10.1038/ncomms10117 

 

Uttal, T. and coauthors (inc. C.J. Cox), (2015): International Arctic Systems for Observing the Atmosphere (IASOA): An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 97, 1033-1056, https://doi.org/10.1175/BAMS-D-14-00145.1 

 

Miller, N., M. Shupe, C.J. Cox, V.P. Walden, and K. Steffen, (2015): Cloud Radiative Forcing at Summit, Greenland. Journal of Climate, 28, 6267-6280, https://doi.org/10.1175/JCLI-D-15-0076.1 

 

Miller, B., C.J. Cox, R.J. Hougham, V.P. Walden, K.B. Eitel, and A. Albano, (2015): Adventure Learning as a curricular approach that transcends geographies and connects people to place. The Curriculum Journal, 26(2), 290-312, https://doi.org/10.1080/09585176.2015.1043925 

 

Murray, B.J., C.G. Salzmann, A.J. Heymsfield, S. Dobbie, R.R. Neely III, and C.J. Cox, (2015): Trigonal ice crystals in Earth’s atmosphere. Bulletin of the American Meteorological Society, 96, 1519-1531, https://doi.org/10.1175/BAMS-D-13-00128.1 

 

Cox, C.J., V.P. Walden, G.P. Compo, P.M. Rowe, M.D. Shupe, and K. Steffen, (2014): Wavelet analysis of downwelling longwave flux and cloud radiative forcing from surface observations and ERA-Interim over Summit, Greenland. Journal of Geophysical Research, 119(21), 12317-12337, https://doi.org/10.1002/2014JD021975 

 

Overland, J., J. Key, E. Hanna, I. Hanssen-Bauer, B.-M. Kim, S.-J. Kim, J. Walsh, M. Wang, U. Bhatt, Y. Liu, R. Stone, C. Cox, and V. Walden, (2014): [The Arctic], The lower atmosphere: air temperature, clouds and surface radiation, [in “State of the Climate in 2013”]. Bulletin of the American Meteorological Society, 95(4), S115-S117

 

Cox, C.J., D.D. Turner, V.P. Walden, M. Shupe, and P.M. Rowe, (2014): Cloud microphysical properties retrieved from downwelling infrared radiance measurements made at Eureka, Nunavut, Canada 2006-2009. Journal of Applied Meteorology and Climatology, 53, 772-790, https://doi.org/10.1175/JAMC-D-13-0113.1 

 

Bennartz, R., M.D. Shupe, D.D. Turner, V.P. Walden, K. Steffen, C.J. Cox, M.S. Kulie, N.B. Miller, C. Pettersen, (2013): July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83-86. https://doi.org/10.1038/nature12002 

 

Shupe, M.D., D.D. Turner, V.P. Walden, R. Bennartz, M.P. Caddedu, B.B. Castellani, C.J. Cox, D.R. Hudak, M.S. Kulie, N.B. Miller, R.R. Neely III, W.D. Neff, and P.M. Rowe, (2013): High and Dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94, 169-186, https://doi.org/10.1175/BAMS-D-11-00249.1 

 

Cox, C.J., V.P. Walden, and P.M. Rowe, (2012): A comparison of the atmospheric conditions over Eureka, Canada and Barrow, Alaska (2006-2008). Journal of Geophysical Research - Atmospheres, 117, D12204, https://doi.org/10.1029/2011JD017164 

 

Mariani, Z., K. Strong, M. Wolff, P. Rowe, V. Walden, P.F. Fogal, T. Duck, G. Lesins, D.S. Turner, C. Cox, E. Eloranta, J.R. Drummond, C. Roy, D.D. Turner, D. Hudak, and I.A. Lindenmaier, (2011): Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers. Atmospheric Measurement Techniques, 5, 329-344, https://doi.org/10.5194/amtd-329-2012 

 

Rowe, P.M., S. Neshyba, C. Cox, V. Walden, (2011): A responsivity-based criterion for accurate calibration of FTIR emission spectra: Identification of in-band low-responsivity wavenumbers. Optics Express, 16, 1050-1055, https://doi.org/10.1364/OE.19.005930



Published Data Sets


Maahn, M., C.J. Cox, M. Gallagher, J. Hutchings, M.D. Shupe, and T. Uttal. (2023) Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.960391   

 

Lanconelli, C. et al. (inc C. Cox). (2023). Baseline surface radiation data snapshot 2023-03-31. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.957398  

 

Jozef, G., R. Klingel, J.J. Cassano, B. Maronga, G. de Boer, S. Dahlke, and C.J. Cox (2023). Lower atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.957760  

 

Cox, C.J. et al. (2023). Met City meteorological and surface flux measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2TM7227K 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #30 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2K649V1f 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #40 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A29P2W74F 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #50 measurements (Level 2, processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2251FM5R 

 

Cox, C.J. et al. (2023). Met City meteorological and surface flux measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2PV6B83F 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #30 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2FF3M18K 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #40 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A25X25F0P 

 

Cox, C.J. et al. (2023) Atmospheric Surface Flux Station #50 measurements (Level 3, final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 – September 2020. Arctic Data Center, https://doi.org/10.18739/A2XD0R00S 

 

Oehri, J. et al. (inc. C.J. Cox) (2022), Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites. PANGEA https://doi.org/10.5194/PANGEA.949792, https://doi.org/10.5194/PANGEA.949764, https://doi.org/10.5194/PANGEA.949789, https://doi.org/10.5194/PANGEA.949791 

 

Pirazzini, R., H. Henna-Reeta, M.D. Shupe, T. Uttal, C.J. Cox, D. Costa, P.O.G. Persson, and Z. Brasseur (2022), Upward and downward broadband shortwave and longwave irradiance and downward diffuse and direct solar partitioning during the MOSAiC expedition. PANGEA https://doi.org/10.5194/PANGEA.952359 

 

Smith, C. and Cox, C. (updated daily) PSL Download Climate Timeseries: ALBSA: Aleutian Low - Beaufort Sea Anticyclone. NOAA PSL. https://psl.noaa.gov/data/timeseries/ALBSA/

 

Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, C. Cox, B. Argrow, and J. Cassano (2022): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign, A0 level data. Arctic Data Center. https://doi.org/10.18739/A2G44HR8B

 

Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, S. Borenstein, C. Cox, B. Argrow, and J. Cassano (2021): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate campaign, A1 level data. Arctic Data Center. https://doi.org/10.18739/A2697000S

 

Calmer, R., G. de Boer, J. Hamilton, D. Lawrence, S. Borenstein, C. Cox, B. Argrow, and J. Cassano (2021): HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Campaign. Arctic Data Center. https://doi.org/10.18739/A22J6857H

 

Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): 10-meter (m) meteorological flux tower measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A2VM42Z5F

 

Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): Atmospheric Surface Flux Station #30 measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A20C4SM1J

 

Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T. (2021): Atmospheric Surface Flux Station #50 measurements (Level 1 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020. Arctic Data Center. https://doi.org/10.18739/A2445HD46

 

Bliss, A. and co-authors (inc. C. Cox) (2021): Raw files for sea ice drift tracks from the Distributed Network of autonomous buoys deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition 2019 - 2021. Arctic Data Center. https://doi.org/10.18739/A2KD1QM54

 

Bliss, A. and co-authors (inc. C. Cox) (2021): Sea ice drift tracks from the Distributed Network of autonomous buoys deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition 2019 - 2021. Arctic Data Center. https://doi.org/10.18739/A2Q52FD8S

 

Cox, C.J. and D. Halliwell (2021): Basic measurements of radiation at station Alert (2004-08 – 2014-06). (119 data sets) AeroCan, Wilcox, PANGEA, https://doi.org/10.1594/PANGAEA.932867

 

Cox, C. (2020): De-Icing Comparison Experiment (D-ICE) campaign data: Radiometric and icing condition observations from the NOAA Barrow Atmospheric Baseline Observatory, August 2017–July 2018 (NCEI Accession 0209059), NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/0209059

 

Cox, C. (2020): De-Icing Comparison Experiment (D-ICE) campaign data: Best-estimate downwelling longwave and shortwave radiometric fluxes from the NOAA Barrow Atmospheric Baseline Observatory, August 2017–July 2018 (NCEI Accession 0209058), NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/0209058

 

Cox, C., McComiskey, A., and Morris, S. (2019): Webcam images of OLI and NSA SKYRAD. U.S. Dept. of Energy (DoE) Atmospheric Radiation Measurement (ARM) Data Center. https://doi.org/10.5439/1507148

 

de Boer, G., Osborn, J., Cox, C., Intrieri, J., Borenstein, S., Dixon, C., and Foscue, G. (2019): miniFlux data from Stratified Ocean Dynamics of the Arctic (SODA) campaign, Beaufort Sea and northern Alaska, 2018. Arctic Data Center. https://doi.org/10.18739/A2SJ19R18

Noone, D. and Cox, C. (2019): Closing the Isotope Hydrology at Summit: Measurements of Source Regions, Precipitation and Post-deposition Processes, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A28K74W5W

 

Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: Meteorological Particle Spectrometers (MPS) 10, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2ZC7RT81

 

Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: Meteorological Particle Spectrometers (MPS) 02, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2348GG4H

 

Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: FM (Fog Monitor) 10, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A26W9688B

 

Noone, D. and Cox, C. (2019): Surface precipitation and fog particle size distribution: FM (Fog Monitor) 02, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2BN9X32Q

 

Driemel, A. and coauthors (inc. C.J. Cox): Baseline Surface Radiation Data (1992-2017). PANGAEA. https://doi.org/10.1594/PANGAEA.880000

 

Noone, D.C., Cox, C.J., Berkelhammer, M., and O’Neill, M. (2018): Tower meteorology at multiple heights and snow temperature, Summit, Greenland, 2011-2014. Arctic Data Center. https://doi.org/10.18739/A2WW76Z78

 

Cox, C. and Harrten, L.M. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Fluxes from NOAA Ship Ronald H. Brown, 2016-02 to 2016-03 (NCEI Accession 0167875), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v58050vp

 

Hartten, L., Johnston, P., Cox, C., and Wolfe, D. (2017): El Niño Rapid Response (ENRR) Field Campaign: Radiosonde Data (Level 2) from Kiritimati Island, January-March 2016 (NCEI Accession 0161525), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v55q4t5k

 

Hartten, L., Johnston, P., Cox, C., and Wolfe, D. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological Data from Kiritimati Island, January-March 2016 (NCEI Accession 0161526), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v51z42h4

 

Cox, C., Wolfe, D., Hartten, L., and Johnston, P. (2017): El Niño Rapid Response (ENRR) Field Campaign: Radiosonde Data (Level 2) from the NOAA Ship Ronald H. Brown, February-March 2016 (NCEI Accession 0161527), NOAA National Centers for Environmental Information. https://doi.org/10.7289/v5x63k15

 

Cox, C., Wolfe, D., Hartten, L., and Johnston, P. (2017): El Niño Rapid Response (ENRR) Field Campaign: Surface Meteorological and Ship Data from the NOAA Ship Ronald H. Brown, February-March 2016 (NCEI Accession 0161528). NOAA National Centers for Environmental Information. https://doi.org/10.7289/v5sf2t80

 

Cox, C., Rowe, P. and Walden, V.P. (2015): Simulated Spectra for Autonomous Arctic Infrared Observer. Arctic Data Center. https://doi.org/10.5065/D61J97TT