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Abstract

Pacific decadal variability (PDV), low-frequency changes in Pacific sea surface temperatures (SSTs), significantly impacts global

climate. However, disentangling anthropogenic effects upon PDV is challenging since both vary on similar time scales. Using

single-forcing climate model large ensembles, we find that anthropogenic forcing primarily drives a spatially-varying pattern of

mean-state change in North Pacific SST that project onto leading PDV patterns, principally the Pacific Decadal Oscillation

(PDO) and North Pacific Gyre Oscillation (NPGO). In fact, when the trend is determined by the model ensemble mean, there

is no forced change of the PDV modes. However, analysis of single model realizations, where the mean-state trend cannot

be cleanly identified, suggests an apparent anthropogenic change in NPGO decadal variability. This suggests that observed

PDV responses to anthropogenic forcing may be erroneously convolved with the background trend pattern. Therefore, correctly

determining the mean-state trend is a necessary precursor for identifying forced changes to PDV.
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Key Points: 15 

• In large climate model ensembles, the Pacific Decadal Oscillation does not exhibit a clear 16 

response to anthropogenic forcing. 17 

• Anthropogenic forcing does affect the North Pacific, but primarily through the time-18 

varying mean-state trend. 19 

• Forced mean-state trends resemble PDV, making variability changes seem apparent if 20 

the background trend isn't correctly removed. 21 

  22 
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Abstract 23 

Pacific decadal variability (PDV), low-frequency changes in Pacific sea surface temperatures 24 

(SSTs), significantly impacts global climate. However, disentangling anthropogenic effects upon 25 

PDV is challenging since both vary on similar time scales. Using single-forcing climate model 26 

large ensembles, we find that anthropogenic forcing primarily drives a spatially-varying pattern 27 

of mean-state change in North Pacific SST that project onto leading PDV patterns, principally 28 

the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO). In fact, when 29 

the trend is determined by the model ensemble mean, there is no forced change of the PDV 30 

modes. However, analysis of single model ensemble, where the mean-state trend cannot be 31 

cleanly identified, suggests an apparent anthropogenic change in NPGO decadal variability. This 32 

suggests that observed PDV responses to anthropogenic forcing may be erroneously convolved 33 

with the background trend pattern. Therefore, correctly determining the mean-state trend is a 34 

necessary precursor for identifying forced changes to PDV. 35 

 36 

Plain Language Summary 37 

Pacific decadal variability (PDV), characterized by long-term shifts in Pacific sea surface 38 

temperatures (SSTs), plays a crucial role in global climate dynamics. Disentangling the influence 39 

of human-induced forcing from natural PDV is complicated by their similar temporal scales. 40 

Through large ensembles of single-forcing climate model simulations, we demonstrate that 41 

anthropogenic forcing predominantly drives spatially heterogeneous mean-state alterations in 42 

North Pacific SSTs, which align with the primary PDV patterns, including the Pacific Decadal 43 

Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO). While the ensemble mean reveals 44 

no direct forced changes in PDV modes, individual model realizations indicate an apparent 45 

anthropogenic modification of NPGO variability. This suggests that observed PDV responses 46 

may conflate anthropogenic trends with natural variability, underscoring the importance of 47 

accurately determining mean-state SST trends to isolate and identify forced changes in PDV. 48 

 49 

1 Introduction 50 

Pacific decadal variability (PDV) impacts global climate and ecosystems, affecting phenomena 51 

such as the recent global warming hiatus (Johnson et al., 2020; Trenberth, 2015; Trenberth & 52 

Fasullo, 2013), Northeast Pacific marine heat wave properties (Capotondi et al., 2022; Di 53 

Lorenzo & Mantua, 2016), and North American precipitation patterns (B. Dong et al., 2018; L. 54 

Dong et al., 2021). PDV is tightly coupled with the most important mode of interannual climate 55 

variability in the tropical Pacific, the El Niño Southern Oscillation (ENSO; e.g., Power et al., 2021 56 

and Capotondi et al., 2023), and can be expected to modulate its characteristics and impacts. 57 

Understanding PDV’s sensitivity to anthropogenic influences is therefore critically important to 58 

understand, simulate, and predict in the context of a changing climate. 59 

 60 
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Numerous studies have suggested that anthropogenic greenhouse gas (GHG) and aerosol 61 

emissions may alter PDV. For instance, 21st century PDV intensification has been attributed to 62 

GHG-driven enhancements of thermodynamic coupling (Liguori & Di Lorenzo, 2018). 63 

Additionally, the increased ocean stratification expected in a warmer climate (Capotondi et al., 64 

2012) may accelerate the ocean adjustment processes central to PDV (Capotondi et al., 2023), 65 

leading to faster and weaker decadal variations (Geng et al., 2019). Anthropogenic aerosols 66 

have also been shown to affect PDV by inducing cooling in the central North Pacific typical of a 67 

positive PDO phase (Hua et al., 2018; Qin et al., 2020) or contributing to negative PDO phases 68 

over the past decades (Dittus et al., 2021; Dow et al., 2021; Smith et al., 2016). Conversely, 69 

some studies argue that anthropogenic forcing has minimal impact on the observed PDO 70 

compared with internal variability (Boo et al., 2015; Newman et al., 2016). These conflicting 71 

findings highlight significant uncertainties in the net effect of anthropogenic forcing on Pacific 72 

climate variability, which we aim to resolve in this paper.  73 

 74 

A major challenge in identifying the response of PDV to anthropogenic influences lies in 75 

separating PDV from forced mean state changes. Climate models tend to simulate an evolving 76 

warming pattern due to GHGs, especially in the tropics and North Pacific (Andrews et al., 2015; 77 

Deser, Phillips, et al., 2020; Xie et al., 2010). While anthropogenic aerosols tend to produce a 78 

more heterogeneous hemispheric cooling (Deser, Phillips, et al., 2020; Shi et al., 2022; Wang et 79 

al., 2016) and long-term La Niña-like cooling in the tropical Pacific (Hwang et al., 2024). Since 80 

the signatures of GHG and aerosol-driven changes are significant in the North Pacific (Huang & 81 

Stevenson, 2021; Shi et al., 2022), background trends have the potential to overlap with PDV 82 

patterns. Nonlinear temporal changes in mean state responses further complicate the isolation 83 

of PDV from background climate trends (Alexander et al., 2018; Solomon et al., 2011; Xu et al., 84 

2022).  85 

 86 

The choice of diagnostics used to determine mean-state trends and PDV affects the degree to 87 

which they can be separated from one another. The traditional definition of the Pacific Decadal 88 

Oscillation (PDO; Mantua et al., 1997) removes the global-mean sea surface temperature 89 

(GMSST) to account for temporal mean state changes. While this approach accounts for 90 

temporal changes in the mean state, particularly those driven by anthropogenic aerosols, 91 

spatially heterogeneous changes in the mean state remain embedded in the variability. 92 

Alternatively, removing linear trends fails to capture nonlinear mean state variations (e.g., Xu et 93 

al., 2022). These limitations make it difficult to assess anthropogenic influences on PDV using 94 

observations or single model realizations. 95 

 96 

Large ensemble simulations using coupled climate models offer a solution by enabling the 97 

separation of forced mean state changes from internal variability. These are suites of typically 98 

20-100 simulations with a single climate model, subject to the same external forcing (e.g. Deser, 99 

Phillips, et al., 2020; Lehner et al., 2020; Maher et al., 2021), but differing only in their initial 100 

conditions.. Averaging all ensemble members provides a statistically robust estimate of the 101 
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response due to external forcing, which can then be removed from each ensemble member to 102 

leave representations of different realizations of internal variability, as demonstrated in studies 103 

detecting changes of marine heatwave (Alexander et al., 2018; Deser et al., 2024), North 104 

American precipitation (Deser et al., 2014), and future ENSO behavior (Maher et al., 2023). This 105 

approach facilitates isolating uncertainty from internal variability, enabling clearer comparisons 106 

of different PDV metrics and improving our understanding of PDV's forced response. 107 

 108 

2 Data and Methods 109 

2.1 CESM and CMIP6 Large Ensemble Simulations 110 

This study employs large ensemble simulations from the National Center for Atmospheric 111 

Research Community Earth System Model version 2 (CESM2; Danabasoglu et al., 2020) covering 112 

the historical period (1850-2015), which includes both natural and anthropogenic climate 113 

forcings (hereafter “full-forcing” simulations). The CESM2 full-forcing Large Ensemble (CESM2-114 

LE; Rodgers et al., 2021) contains 50 ensemble members with smoothed biomass burning 115 

(smbb), and 50 members which do not employ smoothing. Here the smbb ensembles are used 116 

to reduce spurious influences from discontinuities in biomass burning emissions at the start and 117 

end of the satellite era (1997-2014; Fasullo et al., 2022). Each ensemble member has unique 118 

atmospheric and oceanic initial conditions based on the phase of the Atlantic meridional 119 

overturning circulation in the pre-industrial control simulation (Rodgers et al., 2021).  120 

 121 

To isolate the impact of anthropogenic emissions on PDV, we also analyze experiments from 122 

the CESM2 single-forcing large ensemble (Simpson et al., 2023), mainly focusing on GHG and 123 

anthropogenic aerosols (AAER) (Table S1). These single-forcing large ensembles were 124 

constructed using an “only-one” approach (Simpson et al., 2023), where only the target forcing 125 

evolves through time while others are fixed at 1850 levels. The CESM2 SF-LE also contains 126 

biomass burning-only and “everything else” simulations, but we exclude these from the present 127 

analysis as our focus is on GHG and aerosols.  128 

 129 

To ensure the robustness of our CESM results, we also analyze the CESM1 Large Ensemble (Kay 130 

et al., 2015) and CESM1 single-forcing large ensemble (Deser, Phillips, et al., 2020), details for 131 

which are provided in the supplementary (Text S1). Additionally, Coupled Model 132 

Intercomparison Project Phase 6 (CMIP6)-class models with large ensemble sizes (≥10 133 

members) are included. This resulted in the selection of an additional eight climate models 134 

covering the same study period (1920-2015). This includes two recently generated large 135 

ensembles using the Energy Exascale Earth System Model versions 1 (E3SMv1; Stevenson et al., 136 

2023) and version 2 (E3SMv2; Fasullo et al., 2024) and six other CMIP6-class large ensembles 137 

(ACCESS-ESM1-5, CanESM5, GFDL-SPEAR-MED, IPSL-CM6A-LR, MIROC6, MIROC-ES2L) from 138 
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various modeling centers, taken from an existing compilation of large ensemble climate 139 

information (Brunner et al., 2020; Maher et al., 2023). The CMIP6 model names and their 140 

ensemble sizes are summarized in Table S2. 141 

 142 

2.2 Diagnosis of Pacific Modes Independent of the Forced Mean State 143 

 144 

To disentangle the slow spatiotemporal evolution of the mean state from internal variability in 145 

climate models, we utilize three statistical methods. This allows us to assess how the choice of 146 

diagnostic used to identify PDV affect the conclusions drawn about forced changes in PDV – and 147 

the ability of observations to provide definitive answers. 148 

 149 

2.2.1 Traditional method 150 

The first approach allows us to characterize internal variability using definitions traditionally 151 

applied to observations. This method also provides the ability to directly compare model- and 152 

observationally based results. Here we adopt a conventional PDV definition used in the 153 

literature (Mantua et al., 1997; Newman et al., 2016; Trenberth & Fasullo, 2013) by removing 154 

the GMSST. SST anomalies (SSTA) are defined as deviations from the annual cycle after removal 155 

of the GMSST removal, to minimize the influence of forced mean state changes.  156 

 157 

PDV modes are then calculated by applying empirical orthogonal function (EOF) analysis to 158 

SSTA over the North Pacific (20°N-70°N, 110°E-70°W) in each individual ensemble member (or 159 

observations). We include the two leading EOF modes of SST variability, where the leading EOF 160 

describes the PDO (Mantua et al., 1997), and the second EOF mode identifies the North Pacific 161 

Gyre Oscillation (NPGO; Di Lorenzo et al., 2008).  162 

 163 

2.2.2 ‘Projection’ 164 

The traditional method assumes that removing the time series of global-mean SST is sufficient 165 

to remove the mean-state trend from PDV. However, anthropogenic forcings may also change 166 

the underlying structure of PDV. The projection method is a way of detecting this effect; it 167 
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relies on identifying fixed modes of variability using a preindustrial control simulation, which 168 

are then projected onto the forced simulation (e.g., Maher et al., 2014). 169 

 170 

First, we calculate the two leading EOF modes of monthly SSTA in the North Pacific (20°N-70°N, 171 

110°E-70°W) from preindustrial control simulations without any impact of anthropogenic 172 

forcing. Historical SSTA from forced simulations are then projected onto these preindustrial EOF 173 

patterns at each timestep to obtain a time series of projection coefficients, which are regressed 174 

against global SSTA in the historical runs to identify the temporal behavior of PDV patterns.  175 

 176 

2.2.3 ‘Ensemble Mean Removed’  177 

Simply removing GMSST from individual simulations may not fully capture spatial SST structures 178 

affected by anthropogenic forcing. The projection method can still introduce mean-state biases 179 

if forced changes align with variability patterns. Utilizing large ensemble simulations, we can 180 

robustly characterize the forced changes in the mean, including spatial structure information, 181 

and distinguish those from changes in variability (Deser, Lehner, et al., 2020; Lehner et al., 182 

2020; Maher et al., 2021).  183 

 184 

In the ‘ensemble mean removed’ method, we first compute the ensemble mean SST at each 185 

grid point for each month and subtract it from each ensemble member to eliminate forced 186 

mean state changes. After removing the ensemble mean, we calculate the anomalies by 187 

subtracting the monthly climatology over the study period (1920-2014). EOF analysis is then 188 

performed on the residual SSTA within the same North Pacific domain to extract the PDV 189 

modes. The fractions of variance explained by each method are summarized in Table S3. 190 

 191 

2.3 Metrics Using Ensemble Mean to Represent Forced Mean State Changes 192 

External forcings, especially anthropogenic aerosols, have varied non-monotonically over the 193 

historical period. In the case of aerosols, this is due to changing regional emission policies, with 194 

sulfate aerosol emissions increasing before the 1980s and slightly declining afterward (Simpson 195 

et al., 2023). To visually represent the time-evolving forced SST mean state changes after 196 

GMSST removed from GHG and aerosol forcings, we extract the first EOF mode from GHG 197 

(explaining 74.9% of variance) and aerosol simulations (explaining 83.2% of variance) over the 198 

North Pacific domain (20°N-70°N, 110°E-70°W). Similar results are observed for the global 199 
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domain. The combined impact of GHGs and aerosols is represented by adding the individual 200 

mean state impacts of GHGs and aerosols together. 201 

 202 

3 Results 203 

3.1 GHG and Aerosol Effects on Pacific Decadal Variability 204 

  205 

 206 

Figure 1. PDO and NPGO-like modes in CESM2, calculated using the traditional method, and 207 

compared with anthropogenic forcing patterns. a), b): Ensemble mean regression of SSTA onto 208 
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the first and second EOF modes calculated using the traditional method (Section 2.2.1). The 209 

ensemble mean variance fractions explained by each mode are shown at the top. c), d): Linear 210 

trend of Pacific SSTA in CESM2 GHG and aerosol single-forcing simulations (1920-2014) (units: 211 

K/10-years). e): The time series of the mean state changes for GHG-only (orange) and aerosol-212 

only (cyan) forcings represented by the PC1 of the SST ensemble mean after GMSST removed 213 

(see Section 2.3; the corresponding EOF patterns are shown in Fig. S1). The combined impact of 214 

these forcings is shown by the green line. Also shown are PC1 (red) and PC2 (blue) time series 215 

of PDV from CESM2-LE, with shading for two standard deviations among ensemble members 216 

and gray dashed lines indicating 2.5% and 97.5% confidence bounds from 10,000 bootstrap 217 

samples.  218 

 219 

We evaluate PDV performance in CESM2-LE using the traditional definition, which removes the 220 

GMSST to separate PDV from mean state changes. The leading mode in the CESM2-LE full-221 

forcing simulations (Fig. 1a) resembles the PDO pattern in NOAA Extended Reconstructed SST 222 

V5 (ERSSTv5; Fig. S2; pattern correlation of 0.94), showing cooling centered around the 223 

Kuroshio-Oyashio Extension region and warming along the North American coast and in the 224 

tropical Pacific. However, the simulated PDO pattern exhibits a westward shift bias, common 225 

among CMIP5/6 models (e.g., Fasullo et al., 2020), possibly due to the underestimation of 226 

tropical-extratropical interactions (Zhao et al., 2021). The second mode in CESM2 resembles the 227 

NPGO (pattern correlation of 0.82), again with slightly stronger cold SSTA in the tropics 228 

compared to observations (Figs. 1b & S2b). 229 

 230 

The long-term response of the two PDV modes in CESM2—the PDO-like and NPGO-like—aligns 231 

with the reversed evolution of anthropogenic forcing. The PC1 ensemble mean shows a positive 232 

trend from 1950 to 1980, followed by a negative trend toward a negative PDO phase from 1980 233 

to 2014 (Fig. 1e), consistent with the combined effects of GHG and aerosol forcing (Fig. 1e). The 234 

impact of GHG and aerosol forcing on the mean state is assessed through the leading mode of 235 

ensemble-mean SST variability in the CESM2 single-forcing simulations (Fig. S1). Overall, GHG-236 

induced warming tends to exert a negative influence on PDV, while anthropogenic aerosols 237 

have a contrasting, positive effect (Figs. 1b & 1c). Importantly, although the mean value of the 238 

PC coefficients changes through time, the variance associated with both PDV modes are not 239 

appreciably changing over time (Fig. S3). This suggests that the effects of forcing are primarily 240 

felt through changes in the phase of PDV – at least, as diagnosed using the traditional method. 241 

 242 

The PC1 time series in the CESM2 GHG and aerosol single-forcing simulations shows no 243 

significant long-term changes under the traditional definition (Fig. S4). In contrast, the second 244 

mode exhibits a long-term response, particularly a positive trend in aerosol-only simulations 245 

(Fig. S4). The muted response of the PDO-like PC1 in the GHG and aerosol simulations can be 246 

attributed to the spatial pattern of the forced mean state response: SST changes from GHGs are 247 
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prominent in the tropical Pacific (Fig. S1), while aerosol impacts are large in both the tropical 248 

and North Pacific (Fig. S1). These influences are unlikely to affect the PDO pattern, which 249 

features opposite signs between the tropics and extratropics (Fig. 1a). No significant 250 

contribution from biomass burning or other natural forcings in the CESM2 biomass and 251 

everything-else simulations (figure not shown). Therefore, the long-term PDO response in the 252 

CESM2 full-forcing simulation (Fig. 1e) may perhaps result from a nonlinear interaction 253 

between GHG and aerosols or a key process is missing in model. However, the single-forcing 254 

ensembles indicate that the PDO is little affected by either forcing while the NPGO appears to 255 

undergo an amplitude increase primarily due to aerosol forcing.  256 

 257 

 258 

Figure 2. PDO and NPGO-like modes in CESM2, calculated using the projection method. a), b): 259 

Ensemble mean regression of SST onto the projected time series of the first and second modes 260 

computed from the CESM2 preindustrial control run (Fig. S5). c), d): Time series of the 261 

‘projection’ modes 1 and 2 from CESM2 LE full-forcing (black), GHG-only (red), and aerosol-only 262 

(blue) simulations. Dark (light) shading represents one (two) standard deviation(s), while solid 263 

lines show ensemble means. 264 

 265 

Since the traditional definition over the historical period may not completely eliminate 266 

anthropogenic influences, we revisit the problem by using fixed patterns of internal variability 267 

derived from the CESM2 preindustrial control run (the “projection method”). Fields from the 268 
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forced CESM2 simulations are projected onto these fixed modes (Section 2.2.2) to track the 269 

evolution of these patterns in a changing climate. The two leading North Pacific modes in the 270 

control run resemble PDO-like and NPGO-like patterns (Fig. S5).  271 

 272 

The PC time series through the projection method are consistent with the traditional method: 273 

through the ‘projection’ definition in CESM2, the “PDO” mode (PC1; Fig. 2a) shows weak long-274 

term changes in the full-forcing simulations, with no significant responses to GHG or aerosols 275 

(Fig. 2c). In contrast, the second ‘projection’ mode (“NPGO”; Fig. 2b) exhibits a larger forced 276 

signal, especially post-1950 (Fig. 2d). Anthropogenic aerosol emission-driven mean state 277 

changes (Fig. 1e) are responsible for the positive phase of the NPGO mode around 1950-1990, 278 

persisting until the end of the AAER simulations (Fig. 2d). Aerosol effects are also apparent in 279 

the full-forcing simulation, with a positive phase change in the mid-20th century (Fig. 2d). 280 

However, after 1990, increasing GHG and reduced aerosol emissions lead to a negative trend in 281 

the full-forcing ‘projection’ mode 2 (Fig. 2d).  282 

 283 

 284 

Figure 3. PDO-like modes in CESM2 full and single-forcing ensembles, calculated using the 285 

‘ensemble mean removed’ method. a), c), e): Ensemble mean of regression pattern of the first 286 

SSTA EOF mode for the CESM2 full-forcing, GHG-only, and AAER-only simulations after 287 

removing the ensemble mean at each grid point. Contours show differences between 288 

traditional and 'ensemble mean removed' PDV modes, with solid (dashed) contours for positive 289 

(negative) anomalies and a contour interval of 0.05K. b), d), f): PC1 time series for the leading 290 

mode in full-forcing, GHG-only, and AAER-only simulations. Purple lines show 30-year moving 291 
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variance, with dark (light) shading representing one (two) standard deviation(s), and solid lines 292 

showing ensemble means.  293 

 294 

The preceding analyses suggest that anthropogenic forcing has the potential to influence PDV 295 

through long-term mean state changes, but in both the traditional and projection methods, the 296 

background mean state trend is not fully separated from changes to the nature of PDV itself. 297 

Using large ensemble simulations to capture the mean state response, we can effectively 298 

capture the time-varying forced response in climate models by removing the ensemble mean 299 

(the ‘ensemble mean removed’ method, see Section 2.2.3). The leading EOF mode then shows 300 

no significant trend or variance changes in the full-forcing (Fig. 3b), GHG (Fig. 3d), or aerosol 301 

(Fig. 3f) single-forcing ensembles. The same holds for the second, NPGO-like mode (Fig. S6). 302 

Additionally, there is no detectable change in the 30-year moving variance of either mode (Figs. 303 

3d-f & S6), indicating that PDO variability is unaffected by anthropogenic forcing.  304 

 305 

The robustness of these results is confirmed through comparison with large ensembles from 9 306 

other climate models (Tables S1, S2, Text S2). In most models, externally forced mean state 307 

changes tend to cause a response in the dominant (PDO-like) mode similar to CESM2, with a 308 

positive phase in the 1980s and a subsequent negative trend (Fig. S11) for the traditional and 309 

projection methods. However, in all models the ensemble mean removed method results in a 310 

near-complete removal of trends in the PDO; this suggests that the mean-state influence is 311 

generally the dominant factor in PDO phase shifts. The same is true for the second (NPGO-like) 312 

mode, where the ensemble mean removed method eliminates trends in PC2 (Fig. S12). 313 

However, there is more diversity in the behavior of the NPGO-like mode, both in terms of 314 

spatial pattern (not pictured) and temporal behavior (Fig. S12); this may potentially relate to 315 

differences in aerosol representation and aerosol-cloud interactions across models. 316 

 317 

3.2 Comparison with Observed Pacific Modes 318 

The inconsistent response of the PDO and NPGO to forcing across models, and the influence of 319 

the mean-state trend on PDV diagnosed using methods appropriate for observations, raises 320 

questions regarding the true sensitivity of decadal Pacific climate variability to forcing. Models 321 

are known to have limitations in representing tropical Pacific trends (Wills et al., 2022), which 322 

implies that simulated PDV may also be affected when using the traditional diagnostic method. 323 
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To investigate the realism of PDO/NPGO responses, we compare CESM2-LE results with 324 

observations in Figure 4. 325 

 326 

 327 

Figure 4. Time series and long-term trend of PDO and NPGO index in CESM2 as compared 328 

with observations, using the traditional method. a), b): Time series of PDO-like and NPGO-like 329 

modes from CMIP6 large ensembles and observations (ERSSTv5). Shading indicates two 330 

standard deviations of ensemble spread, while solid lines represent ensemble means. c), d): 331 

Linear trend magnitudes in PDO-like and NPGO-like modes over 1920-2014 in CMIP6 and 332 

CESM2 single-forcing simulations. Purple dashed lines in violin plots represent observational 333 

trends. 334 

 335 

The observed PDO was in the positive phase during ~1925-1945 and 1980-2000, and the 336 

negative phase during 1945-1979 and 2000-2014 (Newman et al., 2016). Previous studies have 337 

linked observed PDO phase changes to aerosols (Dittus et al., 2021; Dow et al., 2021; Smith et 338 

al., 2016) or a combination of GHG and aerosol emissions (L. Dong et al., 2014). However, 339 

estimates of the forced response using the traditional method (Fig. 4a) do not align temporally 340 

with the observed PDO in any model examined, suggesting that observed phase changes are 341 
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more likely a result of internal variability. Consistent with this finding, the long-term PDO trend 342 

remains near zero in CESM2, most of CMIP6 large ensembles and observations (Fig. 4c). 343 

 344 

During the historical period (1920-2014), the NPGO index shows no significant linear trend in 345 

both CESM2 full-forcing simulations and observations (Fig. 4d). With exceptions in some CMIP6 346 

large ensembles: a weak positive trend (e.g., E3SMv1); a weak negative trend (e.g., IPSL-347 

CAM6A-LR). In CESM2, this appears to result from compensation between GHG and aerosol 348 

forcing (Fig 4d), indicating the need to correctly represent mean-state responses to both 349 

forcings. We note that these results are somewhat sensitive to the detrending method used 350 

(Brown et al., 2015). Using quadratic detrending instead of GMSST removal before EOF analysis 351 

aligned the observed NPGO more closely with CESM2 (Fig. S13), but the long-term trend in both 352 

cases is near zero. 353 

 354 

4 Conclusions 355 

PDV plays a pivotal role in modulating climate over the Pacific Ocean and impacting global 356 

climate. Accurately understanding the influence of anthropogenic forcing on PDV is therefore 357 

essential for reliable predictions of decadal variability and trends. However, externally forced 358 

mean state changes may become intertwined with the PDV response, leaving the relationship 359 

between PDV and external forcing unclear. This study employs three diagnostic approaches—360 

the “traditional”, “projection”, and “ensemble mean removed”—to disentangle mean state 361 

changes from decadal variability using climate large ensembles. 362 

 363 

Consistent with observational findings, a PDO-like mode and an NPGO-like mode are the two 364 

major PDV modes in CESM2 as well as other climate models. The PDO shows no significant 365 

response to historical forcing in any diagnostic examined; however, the NPGO-like mode does 366 

respond to forcing, with aerosols driving a positive trend from 1950 to 1980 and GHGs inducing 367 

a negative shift from 1980 to 2014. The magnitude of the apparent forced response in the 368 

NPGO mode, however, depends sensitively on the method of mean-state removal. When the 369 

ensemble mean is removed, neither the PDO or NPGO respond to forcing; as this is the most 370 

statistically robust method, this indicates that commonly used observational diagnostics are 371 

affected by mean-state trends.  372 

 373 

Our results offer a potential path toward resolving the differing responses to the PDO reported 374 

in other studies. Although aerosol forcing drives mean-state trends which project onto the PDO 375 

mode (e.g., Dittus et al., 2021), the robust lack of overall PDO response to forcing suggests that 376 

observed PDO phase changes may simply reflect internal climate variability. The major 377 
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response of decadal climate variability to aerosols appears to be in the second, NPGO-like 378 

mode; however, even for the NPGO mode, the dominant cause of the apparent response is the 379 

projection of the mean-state trend onto the spatial pattern of the NPGO rather than a true 380 

change in the nature of NPGO variability itself. It is also crucial to note that in all PDV 381 

diagnostics which can be applied to observations (e.g. those which do not involve averaging 382 

many realizations of internal variability), the effect of the mean state is not fully removed from 383 

the NPGO-like mode. This implies that accurately simulating North Pacific mean-state trends in 384 

climate models is crucial for interpreting disagreements between simulated and observed PDV 385 

– and, in turn, ensuring a realistic representation of the PDV response to anthropogenic forcing. 386 
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Data Availability Statement 403 

The CESM2 full-forcing large ensemble (Danabasoglu et al., 2020; Rodgers et al., 2021) is 404 

accessible at https://www.cesm.ucar.edu/community-projects/lens2/data-sets, while the 405 

CESM2 single-forcing large ensemble (Simpson et al., 2023) can be found 406 

https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm2-single-forcing-le. The 407 

CESM1 large ensemble (Kay et al., 2015) is available https://www.cesm.ucar.edu/community-408 

projects/lens/data-sets, and the CESM1 all-but-one simulation (Deser, Phillips, et al., 2020) can 409 

be accessed https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm1-single-410 

forcing-le. CMIP6 large ensembles used in this study are detailed in Table S2, with the data 411 

available at https://aims2.llnl.gov/search/cmip6/. NOAA Extended Reconstructed SST V5 412 

(ERSSTv5; Huang et al., 2017) can be downloaded through 413 

https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. 414 
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Text S1. CESM1 large ensemble and its all-but-one experiments 23 

The CESM1 Large Ensemble (CESM1-LE; Kay et al., 2015) consists of 40 ensemble 24 

members spanning 1920 to 2004 with a horizontal resolution of 1° for the atmosphere 25 

and land, and a nominal 1° resolution in the ocean (~0.3° near the equator). CESM2 has 26 
identical resolution as the CESM1-LE but with updated versions of the constituent 27 

models. The ensembles in CESM1-LE are obtained by starting in the same year with a 28 

small perturbation in the atmosphere (Kay et al., 2015). 29 

 30 

An “all-but-one” configuration is used for the CESM1 single forcing experiments (Deser, 31 

Phillips, et al., 2020) where the target forcing is fixed at its 1920 state, while the other 32 

forcings vary: these are referred to as the fixed GHG (CESM1-XGHG), the fixed 33 

anthropogenic aerosol (CESM1-XAER), and the fixed biomass burning aerosol (CESM1-34 

XBMB) ensembles (Table S1). We analyze monthly data over the 1920-2015 period, 35 

excluding the pre-1920 data from CESM2-LE and including a 10-year portion (2006-36 

2015) of the Representative Concentration Pathways (RCP) 8.5 from CESM1-LE. 37 

 38 

The effect of each forcing in CESM1 is calculated by taking the ensemble mean 39 

difference between the CESM1-LE and the ensemble mean of an all-but-one forcing case 40 

(e.g., Touma et al., 2021). For instance, the effect of GHG emissions is computed as 41 

  42 

Effect of GHG = (CESM1-LEi - CESM1-XGHGem)em 43 

 44 

Here i indicates the i-th ensemble member, and em indicates the ensemble mean.  45 

 46 

Text S2. Results are consistent across multiple models  47 

The robustness of these results is evaluated by comparison with PDV modes diagnosed 48 

using the three analysis methods on other climate models. Specifically, we examine 49 

CESM1 full and single forcing large ensembles, as well as 8 large ensembles which 50 

participated in CMIP6.  51 

 52 

In CESM1, both the full and single-forcing large ensembles also exhibit a “PDO-like” and 53 

an “NPGO-like” mode that dominate Pacific variability, whether using the traditional 54 

method (Fig. S7) or the ‘projection’ method (Fig. S8). The major difference in the spatial 55 

pattern is that the NPGO pattern in CESM1 is stronger, with more pronounced signals 56 

over the Kuroshio extension and warm pool (Fig. S7b), compared to the anomalies in 57 

CESM2 (Fig. 1b). 58 

 59 

However, unlike the forced signals in CESM2 (Fig. 1e), the PDO or the NPGO modes 60 

themselves are mainly dominated by internal variability in full forcing ensembles 61 

irrespective of whether the traditional method (Fig. S7c) or the ‘projection’ method is 62 

used (Figs. S8g & S8h). Although anthropogenic aerosols tend to shift the NPGO mode 63 
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to a positive phase during 1960-1990 and a negative tendency after 1990 (Fig. S8h), the 64 

net effect of the external forcings on the NPGO-like mode in CESM1 LE shows no 65 

significant impact (Fig. S8). This might be related to the stronger sensitivity of aerosol-66 

cloud radiation impact in CESM2, which may outweigh the response to GHG emissions 67 

(Gettelman et al., 2019). This is evident from the stronger SST response observed over 68 

the Pacific in CESM2 aerosol-only simulations (Fig. 1d) compared to the SST mean state 69 

response of CESM1 aerosol forcing (Fig. S9). Although models may exhibit different 70 

responses to anthropogenic forcing, removing the ensemble mean trends in models also 71 

eliminates their differences in mean state changes. As a result, the mean-removed 72 

method shows no changes in ensemble mean of PDO and NPGO in CESM1 (Fig. S10) 73 

consistent with the results in CESM2 (Fig. 3). 74 

 75 

Most of the CMIP6 large ensembles capture the PDO-like pattern as the first mode (Fig. 76 

S11a) and the NPGO-like pattern as the second mode (Fig. S12a). Results from CMIP6 77 

large ensembles again indicate that the long-term response in PDV could be associated 78 

with the forced mean state change. Ensemble mean time series for both the PDO and 79 

NPGO show an externally forced response, with a positive trend before the 1980s and a 80 

negative trend afterward (Fig. S11b), consistent with results from CESM2 (Fig. 1e). 81 

External forcing also strengthens the pattern of the PDO-like mode, as seen from the 82 

‘projection’ method in CMIP6 (Fig. S11c). When the ensemble mean is removed from 83 

each model, the forced responses disappear from both modes (Figs. S11f & S12f).  84 

 85 

However, there is a noticeable increase in ensemble spread in each model with greater 86 

intermodal differences when using the ‘projection’ method (Fig. S11d) compared to the 87 

traditional method (Fig. S11b). Larger uncertainty among the models may imply that the 88 

projection method is more sensitive to differences between models. Externally forced 89 

patterns differ among climate models, leading to major differences in the ‘projection’ 90 

method (Fig. S11d): the PDO time series responds to forcing in the ensemble mean of 91 

some models, while it does not for others. 92 
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 93 

 94 

Figure S1. Spatial patterns of SST mean state changes in CESM2 GHG and aerosol 95 

single-forcing simulations (1920-2014), represented by the first EOF mode of the SST 96 

ensemble mean after GMSST removed (units: K; see Section 2.3). 97 

 98 
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 99 

Figure S2. Two leading modes, the PDO mode and the NPGO mode, in observations 100 

over 1920-2014. Regression of SSTA onto the first and second EOF over the North Pacific 101 

after removing global mean SST in NOAA Extended Reconstructed SST V5 (ERSSTv5; 102 



 

 

6 

i 

https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html). The percentage of explained 103 

variance is displayed at the top of each panel. 104 

 105 

 106 

Figure S3. 10-year moving variance of PCs from the traditional method in CESM2 full-107 

forcing. The red (PC1) and blue (PC2) dashed lines show 10-year moving variance of PDV. 108 

 109 
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 110 
Figure S4. Time series of the first two leading modes of PDV through the traditional 111 

method in a) CESM2 GHG-only and b) CESM2 aerosol-only simulations. Similar to Fig. 1e 112 

but for single forcing simulations. The red (blue) dash line indicates 10-year moving 113 

variance of the PC1 (PC2). Shading in e) represents one standard deviation among 114 

ensemble members, while the solid thick lines represent the ensemble mean. The 2.5% 115 
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and 97.5% confidence bounds, obtained through 10,000 bootstrap samples, are shown 116 

as black dashed lines. 117 

 118 

 119 

 120 

Figure S5. The two major modes in CESM2 preindustrial control runs. EOF on monthly 121 

anomalous SST outputs over the North Pacific Ocean with global mean SST removed. 122 

The percentage of explained variance is displayed at the top of each panel.  123 
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 124 

 125 

Figure S6. Similar to Figure 3 but for the EOF2 using the mean removed method in 126 

CESM2 full-forcing, GHG-only and aerosol-only simulations. 127 

 128 

 129 

 130 
Figure S7. The spatial patterns and time series of the first two major modes using the 131 

traditional method in CESM1 a-c) full forcing, d-f) GHG and g-i) aerosols single forcing 132 

ensembles. Shading in c), f), i) represents one standard deviation among ensemble 133 

members, while the solid thick lines represent the ensemble mean. 134 

 135 
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 136 

Figure S8. The major Pacific SST modes using the projection method in CESM1. Similar 137 

to Figure 2 but for CESM1 full-forcing and all-but-one forcing runs. 138 

 139 
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 140 

Figure S9. Similar to Fig. S1 but for the CESM1 mean state SST change patterns of a) 141 

GHG effect and b) aerosol effect based on CESM1 all-but-one forcing simulations (see 142 

Text S1). 143 

 144 

 145 
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 146 
Figure S10. The spatial patterns and time series of the first two major modes using the 147 

ensemble mean removed method in CESM1 LE full forcing and all-but-one simulations.  148 

 149 

 150 

 151 

 152 
Figure S11. PDO changes using the three analysis methods in CMIP6 full forcing large 153 

ensembles (a complete list of CMIP6 models is provided in Table S2). Left column: multi-154 

model mean regression spatial patterns for EOF1 calculated through the a) traditional, c) 155 
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‘projection’ and e) 'mean removed’ methods. Stippling in a) indicates that less than 90% 156 

of ensemble means agree on the sign of the EOF1 loading through the binomial test. 157 

Right column: time series of PC1 of each CMIP6 model through the b) traditional, d) 158 

projection and f) ensemble mean removed methods. Shading in b), d) and f) represents 159 

one standard deviation of ensemble spread in each model while the solid lines represent 160 

the ensemble mean for each ensemble. The time series of multi-model ensemble mean is 161 

shown as a black solid line. 162 

 163 

 164 

 165 
Figure S12. Same as Figure S11 but for the second mode of Pacific SSTA, in CMIP6 full 166 

forcing ensembles. 167 

 168 
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  169 
 170 

Figure S13. Demonstration of using a quadratic detrend to remove the SST mean state 171 

response in observations and CESM2 LE. This corresponds to Figs. 4a & 4b but using the 172 

quadratic detrending method rather than removing the GMSST. 173 

 174 

  175 
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Models Ensemble size Forcing Time 

CESM1-LE 40 Full 1920-2015 

CESM1-XGHG 20  All but GHG  1920-2015 

CESM1-XAER 20 All but anthropogenic aerosol  1920-2015 

CESM2-LE 50 

Full forcing with smoothed 

BMB (called CESM2-smbb) 1850-2015 

CESM2-GHG 15 GHG Only 1850-2015 

CESM2-AAER 20 Anthropogenic Aerosol Only 1850-2015 

Table S1. Information on CESM simulations used in this study. All CESM1 experiments 176 

use the CMIP5 version of the specified forcing, while CESM2 simulations use the CMIP6 177 

updates for each forcing time series. 178 

 179 

 180 

Modeling Center Models Ensemble size Reference 

CSIRO ACCESS-ESM1-5 40 Ziehn et al. 2020 

DOE E3SMv1 18 Stevenson et al. 2023 

DOE E3SMv2 20 Fasullo et al. 2024 

CCCma CanESM5 40 Swart et al. 2019 

GFDL GFDL-SPEAR-MED 30 Delworth et al. 2020 

IPSL IPSL-CM6A-LR 30 Boucher et al. 2020 

MIROC MIROC6 50 Tatebe et al. 2019 

MIROC MIROC-ES2L 30 Hajima et al. 2020 

Table S2. CMIP6 large ensembles used in this study and their ensemble size. Surface 181 

temperature over the ocean is used for E3SMv2 to represent sea surface temperature 182 

since their ocean variables are missing. We cannot find the preindustrial run for GFDL-183 

SPEAR-MED, so GFDL-SPEAR-MED is not corporated in the projection method. Data 184 

compiled and regridded by Maher et al, 2023; & Brunner et al 2020.  185 

 186 



 

 

16 

i 

Model Traditional method  Mean removed method 

CESM2 Full forcing 22.8% (11.8%) 20.3% (10.9%) 

CESM2 GHG-only 21.3% (12.1%) 21.7% (12.2%) 

CESM2 Aerosol-only 21.1% (14.4%) 22.0% (10.1%) 

CESM1 Full forcing 24.8% (14.1%) 25.3% (15.0%) 

CESM1 GHG effect 25.1% (15.0%) 24.0% (17.4%) 

CESM1 Aerosol effect 26.0% (15.1%) 27.8% (16.5%) 

ACCESS-ESM1-5 17.9% (10.9%) 16.9% (10.7%) 

E3SMv1 17.8% (11.7%) 17.6% (11.0%) 

E3SMv2 14.9% (11.7%) 15.0% (11.7%) 

CanESM5 19.3% (8.9%) 17.0% (8.3%) 

GFDL-SPEAR-MED 16.9% (11.6%) 15.1% (10.6%) 

IPSL-CM6A-LR 15.8% (10.6%) 14.2% (9.6%) 

MIROC6 27.9% (11.6%) 25.3% (11.6%) 

MIROC-ES2L 27.9% (10.8%) 25.1% (11.0%) 
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Table S3. Ensemble mean percentage of variance explained in EOF1 (EOF2) using either 187 

the traditional method or the mean-removed method in each large ensemble. 188 

 189 
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