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ABSTRACT: ENSO is a complex climatic phenomenon that significantly impacts global weather patterns and ecosystems. Improving its
prediction is therefore of high societal value. However, Global Circulation Models present severe biases when predicting ENSO, and their
skill remains comparable to that of vastly simpler empirical models such as Linear Inverse Models (LIMs). LIMs, however, rely on linear
dynamics, and they have inherent limitations in capturing the behavior of non-linear phenomena. In this context, Koopman operator theory
has emerged as a powerful mathematical framework, offering a novel perspective for analyzing complex non-linear systems. While previous
studies have demonstrated the potential of Koopman methods for ENSO forecasting, a fundamental question remains: how much data is
actually needed to obtain robust Koopman operator estimates? In this study, we address this issue by performing a systematic sensitivity
analysis on the reliability of Koopman-based forecasts as a function of data length. Using 2000 years of tropical SST pre-industrial
CESM2 data, we assess the skill of the Niño 3.4 index forecasts within the nonlinear Koopman framework and compare these results to the
benchmark set by LIMs. Our findings reveal nuances in the robustness of Koopman operator estimates, particularly evident when using
shorter training periods. However, a notable breakthrough emerges, as we demonstrate the higher skill of the Niño 3.4 Koopman Ensemble
Forecasts (KEFs), which showcase consistent improvements over linear models. In addition, the model shows notable improvements in
capturing the variability of the western Pacific, as well as in the reliability of the El Niño and La Niña events forecasts.

SIGNIFICANCE STATEMENT: This study aims to
improve our ability to predict ENSO variability, whose
El Niño and La Niña events have major effects on global
weather and ecosystems. We explored a new data-driven
approach using Koopman decomposition, which provides a
solid dynamical framework to analyse and possibly under-
stand highly nonlinear systems. By applying this method
to long records of sea surface temperature data, we found
that it can significantly improve the accuracy of El Niño
and La Niña forecasts, especially for predictions made well
in advance. This advancement could lead to more reliable
forecasts, helping communities better prepare for and re-
spond to ENSO events.

1. Introduction

The El Niño–Southern Oscillation (ENSO) is the
dominant mode of tropical atmosphere-ocean variability,
with its influence extending globally through atmospheric
teleconnections. In addition, ENSO affects ecosystems,
agriculture, freshwater supplies, and other severe weather
events worldwide (Ropelewski and Halpert 1986; Siegert
et al. 2001). Understanding ENSO predictability is
therefore a matter of high societal relevance, and im-
proving ENSO predictions is an important goal of the
seasonal forecasting community (L’Heureux et al. 2020;
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Zhang et al. 2022). However, many general circulation
models (GCMs) struggle in simulating the basic statistical
properties of ENSO (Bellenger et al. 2014; Planton et al.
2021), and their prediction skill remains comparable to
that of vastly simpler empirical models (Newman and
Sardeshmukh 2017; Richter et al. 2020).

Among those, linear inverse models (LIMs; Penland
and Sardeshmukh (1995)) have been successfully imple-
mented for decades, demonstrating significant long-lead
forecasting skill for Pacific SSTs. LIMs are empirical
dynamic models that assume that the temporal evolution
of the predictand is described by a multivariate linear
Markov process plus noise, representing the rapidly
evolving (and unpredictable) nonlinearities (Penland
1996). The mechanism of LIMs represents ENSO as a
linear combination of modes, usually obtained through
empirical orthogonal function analysis, whose temporal
evolution can be inferred through linear regression
techniques allowing for the prediction of SST anomalies
based on past observations.

The LIM was first implemented for tropical SSTs by
Penland and Sardeshmukh (1995), and subsequently
extended to capture subsurface and ocean-atmosphere
coupling effects (Newman et al. 2011), and through the
development of cyclostationary LIMs, which include
annual cycles of linear dynamics and stochastic forcing
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(Shin et al. 2021). In addition, Newman and Sardeshmukh
(2017) showed that the prediction skill of LIMs could
meet or exceed that of the GCMs, comprising the North
American Multimodel Ensemble (Shin et al. 2021; New-
man and Sardeshmukh 2017). However, LIMs assume
that predictable dynamics are effectively linear, and they
are therefore inherently limited for capturing predictable
aspects of nonlinear phenomena.

Within this context, the works of Koopman (1931)
and Koopman and Neumann (1932) provide the basis
for an alternative to the problem. The Koopman op-
erator framework, rooted in ergodic theory, states that
associated to every dynamical system are intrinsic linear
operators acting on a potentially infinite-dimensional
space of observables (functions on the state space). By
representing the evolution of observables within a much
higher-dimensional function space, Koopman analysis
helps identify coherent structures and dominant modes of
variability. These modes can then be used to compute fore-
casts by tracking their temporal evolution (Navarra et al.
2021; Mezić 2005; Mezić 2013; Rowley et al. 2009; Berry
et al. 2015; Wang et al. 2020). The infinite-dimensional
nature of the Koopman operator made its practical ap-
plication computationally challenging, leading to limited
use for almost a century. However, recent advances in
numerical techniques, such as Extended Dynamic Mode
Decomposition (EDMD) and the Variational Approach of
Conformation Dynamics (VAC) (Schütte et al. 2016), have
renewed interest in the framework due to its potential for
analyzing complex, high-dimensional nonlinear systems.

Some recent studies, such as Berry et al. (2015), Wang
et al. (2020), and Navarra et al. (2021), have applied Koop-
man methods to predict the Niño 3.4 index using kernel-
based approximations of the Koopman operator. Wang
et al. (2020), in particular, employed a Gaussian kernel
method in a framework known as Kernel Analog Fore-
casting (KAF), which produces forecasts mathematically
similar to kernel-weighted ensemble forecasts (Wang et al.
2016). In addition, Navarra et al. (2021) compared the
performance of the k-EDMD algorithm using linear and
Gaussian kernels, following the idea that LIMs are a spe-
cific case of the Koopman framework in which linear func-
tions are used for expanding the observable’s space. Their
results highlight the potential for improved ENSO forecast-
ing using Koopman-based methods, suggesting that non-
linear kernels could enhance ENSO predictions beyond
the operational benchmark set by LIMs. However, these
studies focus on direct forecasting applications, and do not
assess the robustness of Koopman operator estimates with
respect to data availability. This gap is crucial, as the reli-
ability of data-driven forecasting approaches depend on its
sensitivity to the characteristics of the training data and the

parameters involved in the tuning of the algorithm (Navarra
et al. 2021).

These are common issues for machine and deep learn-
ing methods, which often require extensive data records
to outperform simpler linear approaches. Nonlinear
methods, in fact, require large amounts of data to fit the
nonlinear patterns successfully. Otherwise, they struggle
with generalization to unseen samples and overfitting
(Zhang 2012). Not only is pre-processing such datasets
resource-intensive, but the availability of continuous
and reliable data is often challenging, particularly for
multidecadal phenomena (Mu et al. 2019; Zhang 2012).
These are compelling concerns for the Koopman frame-
work, as it is based on the estimation of a potentially
infinite-dimensional underlying operator from finite data
records, leading to sampling uncertainty issues.

Addressing these issues, our study provides a structured
evaluation of how data availability impacts Koopman-
based predictions, offering key insights into the conditions
necessary for their successful application to climate
forecasting. We seek to explore a systematic evaluation
of Koopman prediction skill for ENSO forecasting using
extensive simulated pre-industrial data from the CESM2
model, in order to test the ability of Koopman operators to
extract the dynamics of a stationary complex system. In
addition, the availability of 2000 years of data enables to
probe the sensitivity of Koopman skill to data availability.
By employing subsamples of varying lengths, we inves-
tigate the impact of data record length on the operator’s
robustness and forecast performance, discerning the
optimal conditions for Koopman-based forecasting. Yet,
our analysis reveals the presence of significant uncertainty
in the estimated Koopman operators, which undermines
forecast reliability. To address this issue, we propose a
novel approach —Koopman Ensemble Forecasts (KEF)
— aimed at enhancing forecast robustness and mitigating
the effects of noise. In this approach, several estimates of
the Koopman operator are computed from sub-samples
of the data and used as independent models to produce
an ensemble. By leveraging ensemble forecasting tech-
niques, we seek to harness the collective skill of multiple
Koopman operators, offering a more resilient forecasting
framework capable of overcoming the inherent limitations
of individual operators.

The paper is organized as follows. In Section 2 we
review the basics of Koopman theory and spectral decom-
position. In Section 3, the data and methodology are de-
scribed. Section 4 discusses the problem of robustness
in the Koopman spectrum. Section 5 presents the results
of the KEFs to the Niño 3.4 index, while Sections 6 and
7 focus on Pacific SST forecasts and the reliability of El
Niño/La Niña events. In Section 8 we extend our results
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for shorter training data lengths, to come closer to a real-
istic scenario of observed data. Finally, we summarize the
results and conclude in Section 9.

2. Koopman spectral decomposition and estimation of
the Koopman spectrum from data

a. Basics of Koopman theory

A deterministic dynamical system can be defined by a
differential equation of the form:

𝑑z
𝑑𝑡

= F(z) (1)

where z (𝑧0, 𝑧1, ...𝑧𝑛) is an 𝑛+1 dimensional state vec-
tor and F denotes the vector field governing the dynamics
of the system. When the vector z corresponds directly
to physical parameters, such as temperature or sea level
pressure, we call them “full-system states”. In practical
applications, however, we often work with reduced repre-
sentations of the state, denoted as x, which may be obtained
via empirical orthogonal function (EOF) analysis or other
dimensionality reduction techniques. These reduced rep-
resentations can be expressed as vector-valued functions
of the full system state, i.e., x = 𝑓 (z), and are sometimes
referred to as “state vectors” in a reduced sense. However,
it is important to recognize that x does not necessarily
evolve according to an autonomous deterministic equation
like Eq. 1. Instead, the Koopman framework allows us
to study the evolution of observables 𝑔(x), which are any
functions of the state. The value of a general observable
g(x) at time 𝑡, starting from x0 at time zero, is given by

g(𝑡,x0) = g(x𝑡 ). (2)

In this context, the Koopman operator 𝐾 𝜏 describes the
evolution of observables g(x) over a lag time 𝜏 as

𝐾 𝜏 (g(x0)) = 𝑔(𝑈𝜏 (x0)) = x𝑡 , (3)

in the same way that 𝑈𝜏 , the flow map associated with
the field F, evolves the state z for a fixed lag time 𝜏. Note
that the Koopman operator (and therefore its eigenvalues
and eigenfunctions) implicitly depend on the chosen lag
time for its computation. For the sake of simplicity, we
will omit this dependency and refer to 𝐾 𝜏 as 𝐾 .

A key property of the Koopman operator is its linearity,
which allows the use of spectral decomposition techniques
despite the underlying nonlinear dynamics of the system.
This framework enables us to represent complex behav-
ior through a set of linear modes, but it comes at the cost
of dealing with an infinite-dimensional space. In practi-
cal applications, we approximate this infinite-dimensional
operator using a finite set of eigenfunctions, whose asso-
ciated eigenvalues determine the temporal evolution of the

system. This spectral decomposition is fundamental for
forecasting applications, as it provides a structured way to
analyze and predict system dynamics.

Assuming that we can estimate the spectral decompo-
sition of a system’s Koopman operator, we can use it to
expand its observables (and states, by using the identity
observable g(x) = x, which returns the state vector itself),
and evolve them in time to produce forecasts.

A vector observable g(x) can be expressed in terms of its
Koopman spectral decomposition as follows (Mezić 2005;
Mezić 2013; Navarra et al. 2021)

𝐾 𝑡 (g(x)) = g(x) +
∑︁
𝑘

v𝑘𝜙𝑘 (x)𝑒𝜆𝑘 𝑡 +n(𝑡,x) (4)

where three components can be distinguished: the
time mean g(x), an almost-periodic component based
on Koopman eigenfunctions and eigenvalues (𝜙𝑘 (x),𝜆𝑘 =
𝜎𝑘 + 𝑖𝜔𝑘), and a completely aperiodic component corre-
sponding to the continuous part of the spectrum (n(𝑡,x)).
Note that as the time mean g(x) is included as a sepa-
rate term in the expansion, the eigenspace corresponding
to 𝜆𝑘 = 1 is excluded from the point spectrum component
sum.

The coefficients v𝑘 , known as Koopman modes (see A6
in Appendix A for a detailed formulation), represent the
projection of each component of the observables vector on
the Koopman eigenfunctions, and portray spatial patterns
of variability that evolve with time. On the other hand, the
values that the eigenfunctions take at the data points can
be interpreted as the magnitude of these spatial patterns
at specific time steps, while the Koopman eigenvalues,
with their real and imaginary components, tell us about the
timescales and frequencies of the modes. The real part of
the eigenvalue reflects the growth or decay rate of a mode,
which can provide insights into the stability of specific
patterns. The imaginary part relates to the oscillatory
nature of the mode, giving us information about the period
of the oscillations.

It is important to note that the validity of this spectral
expansion depends on the properties of the Koopman
operator and the function space in which it is defined.
In the case of measure-preserving dynamics, where the
Koopman operator is unitary on the 𝐿2 space associated
with the invariant measure, the expansion holds in an 𝐿2

sense, meaning it describes the evolution of observables
in a mean sense over the attractor rather than pointwise
(Mezić 2005). In more general cases, it serves as an
approximation, especially in finite-dimensional settings.
Here, we adopt a data-driven approach, estimating the
Koopman operator from time series and analyzing its
spectral properties within this framework.
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b. Koopman operator spectra from data

The Koopman decomposition can be derived from time
series data using various techniques. In this work we use
the k-EDMD (Klus et al. 2019) algorithm (see Appendix
A for the details of the methodology), which has been
previously employed in the context of ENSO forecasting
by Navarra et al. (2021).

EDMD relies on a set of nonlinear features 𝑃 =

[𝑝1, 𝑝2, . . .] to elevate the data to a higher-dimensional
space. These functions can take different forms, such as
Gaussians, polynomials or radial functions, and they act as
a basis to expand the space where the Koopman operator
acts. However, explicit calculations of features can quickly
become computationally expensive. Kernels play a pivotal
role in mitigating this burden. They provide a Reproducing
Kernel Hilbert Space (RKHS), where data can be implic-
itly expressed in terms of the feature functions. The value
of the features in any state vector x is obtained from the
kernel function as 𝑝𝑖 (x) = 𝑘 (x𝑖 ,x). The representer theo-
rem states that for any function 𝑔 in the RKHS, and for any
tolerance 𝜖 > 0, there exists a finite set of points 𝑥1, . . . , 𝑥𝑛
and scalars 𝛼𝑖 such that the residual 𝑔(𝑥) −∑𝑛

𝑖=1𝛼𝑖 𝑝𝑖 (𝑥)
has an RKHS norm less than 𝜖 , where the 𝛼𝑖 are expansion
coefficients of g with respect to the kernel features (Navarra
et al. 2021). It is important to note that not all observables
necessarily lie in the RKHS induced by a given kernel. For
example, when using a Gaussian kernel, the RKHS con-
sists only of bounded functions, meaning that functions of
the form 𝑔(x) = xj, which are unbounded, are generally not
part of this space. However, practical applications often
rely on approximations within the RKHS, which can still
yield meaningful representations of the system’s dynamics.

This approach, also known as the “kernel trick”, allows
to employ richer sets of functions, improving the approxi-
mations of the Koopman operator (Scholköpf and Smola
2002). Importantly, the choice of the kernel determines
the function space used to approximate the Koopman
operator, which can change how well we capture the
system’s evolution. A well-chosen kernel can help reveal
hidden structures in the data by mapping observations
into a space where complex behaviors become easier
to model. When the standard inner product is used
to measure similarity, the function space is restricted
to linear functions, yielding the same eigenvalues and
eigenfunctions as those obtained in LIM algorithms (Tu
2013; Tu et al. 2014; Navarra et al. 2021).

In our work, we use the Gaussian kernel, which is char-
acteristic and universal, meaning that it can approximate all
continuous functions of the state variables (complete set),
and allows for perfect distinction between different distri-
butions (Muandet et al. 2017). Therefore, applicability
tests such as the 𝜏- test are not needed, as universal kernels
guarantee that the model can distinguish between differ-

ent underlying distributions. In addition, Gaussian kernels
are positive definite and limited between zero and one, not
requiring further normalization, and they have been used
in previous applications for SST data demonstrating good
results (Navarra et al. 2021, 2024). The Gaussian kernel

𝑝𝑖 (x) =
1

(
√

2𝜋𝑠)𝑛/2
exp(−||x−x𝑖 | |2/2𝑠2), (5)

will be compared to the linear one, used as a benchmark
(𝑝𝑖 (x) = ⟨xi,x⟩). In the Gaussian kernel, the bandwidth 𝑠
determines the influence radius of data points with respect
to each other. Ideally, a larger bandwidth is desired
in regions with low state density, and a smaller one in
regions with higher state density (Froyland et al. 2021).
There are different approaches to choose 𝑠, including
bandwidths that normalize distances to unit standard
deviation (Navarra et al. 2021) or “self-tuning” kernels
that adjust the bandwidth depending on the density of the
region (Berry et al. 2015; Berry and Harlim 2016). In
this study, a bandwidth based on the distance between
temporal nearest neighbors has been used. Although the
detailed values of the eigenvalues might be sensitive to
small changes in the bandwidth selection, the properties
of the modes remain robust.

3. Data and methodology

In this paper, we use 2000 years of pre-industrial
control (pi-Control) runs from the Community Earth
System Model (CESM2). CESM2 is a fully-coupled
GCM developed by the National Center for Atmospheric
Research (NCAR), and it provides state-of-the-art sim-
ulations of the Earth’s past, present and future climate
states (Danabasoglu et al. 2020). In particular, we use
SST and SSH (sea surface height) data from the monthly
averaged pi-Control runs of the Ocean Post Processed
Data, available at www.cesm.ucar.edu:/models/cesm2/.

Pre-industrial control runs are simulations where the
model is run without changes in external forcings, such
as greenhouse gas concentrations, and they are often
a baseline to understand the natural variability of the
climate system. Due to their relatively constant dynamics,
pi-Control runs allow to test the Koopman framework skill
to capture and forecast the system’s internal variability
without the influence of external factors or measurement
errors from observational datasets. In addition, pi-Control
runs typically span several centuries, providing sufficiently
long time-series to test Koopman operator sensitivity
to the training record length. Moreover, the CESM2
pre-industrial simulation has demonstrated to realistically
simulate several aspects of ENSO, including its dominant
timescales, tropical and extratropical precursors, compos-
ite evolution of El Niño and La Niña events and ENSO
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teleconnections to the extratropics. However, the modeled
ENSO amplitude is about 30% larger than observed, with
larger variability occurring in the central Pacific rather
than the eastern Pacific, limiting the model’s ability to
represent the full diversity of El Niño spatial patterns
(Capotondi et al. 2020).

The original data comprises SST and SSH monthly
means featured in a tripolar grid. As a part of the
pre-processing, they have been regridded into a 1ºx 1º
regular grid. The study region was defined as 32º N to 31º
S and 130 ºE to 70 ºW (see Figure 6), resulting in a total
number of 9121 grid points (after the land-sea mask).
Although the dataset should not present externally forced
trends, it has been linearly de-trended point by point
to ensure no tendencies are present. Anomaly monthly
means have been computed with respect to the monthly
climatology and normalized by the total standard deviation.

Prior to the Koopman analysis, the data has been pre-
processed through an EOF analysis. Two different subsets
of EOFs will be used through the study: a configuration
with 30 EOFs (20 SST + 10 SSH, retaining 84% and 65%
of the total variance, similar to configurations used for
constructing tropical Pacific LIMs from observational data
(Penland and Sardeshmukh 1995; Newman et al. 2011;
Navarra et al. 2021)) and a configuration retaining all
the variability (keeping the rank of the data matrix: 845
EOFs for SST and 1000 for SSH) which is used only for
the Gaussian kernel. After this transformation, the state
vectors contain the EOF coefficients for every monthly
mean anomaly. We can then organize the data according
to A1, where 𝑚 equals the total number of months and
the dimension of the vectors 𝑥𝑖 depends on the number of
retained EOFs.

Additionally, we will subsample the record in chunks of
different lengths (1000, 400, 200, 100 and 50 years). Each
subsample will be used to compute a single estimation of
the Koopman operator, which we label by the length of
the data used (e.g., K100 is a Koopman operator estimated
using a 100-yr long record). The spectra of the estimations
will be compared to study their sampling uncertainty.
Subsequently, Koopman Ensemble Forecasts (KEF) will
be carried out. To do so, each operator is used to produce
forecasts that cover the entire data series except the period
from which that operator was computed, leading to a
cross-validation-like structure. The forecasts are treated
as members of the KEF, which is composed of 𝑗 members,
where 𝑗 equals the number of total available years (2000)
divided by the length of the sub-samples minus one (as
the operator computed using a certain chunk of data is not
included in its forecast). For instance, the 100-yrs KEF
will be composed of 19 members, each one produced by
one of the 20 possible K100 from the entire dataset. The

properties and skill of the KEF mean and members are
then compared. The idea behind the KEF is to reduce the
sampling uncertainty of the estimated Koopman operators,
which presents in the form of noisy departures from the
real underlying operator of the system. This approach
is closely related to bagging techniques, widely used in
the machine learning community to improve unstable
modelling procedures by combining estimates from
different models (Petropoulos et al. 2018; Liu et al. 2023).
By averaging forecasts made with different estimates of
the Koopman operator, we seek to mitigate the effects of
the sampling uncertainty, hopefully leading to more robust
forecasts.

Forecast skill of the KEFs is assessed with the Anomaly
Correlation Coefficient (ACC), which gives a measure of
the correlation between anomalies of the forecasts and
those of verifying values:

𝐴𝐶𝐶 =

∑𝑛
𝑖=1 (𝑂′

𝑖
−𝑂′) (𝐹′

𝑖
−𝐹′)√︃∑𝑛

𝑖=1 (𝑂′
𝑖
−𝑂′)2

√︃∑𝑛
𝑖=1 (𝐹′

𝑖
−𝐹′)2

(6)

where 𝑂′
𝑖

and 𝐹′
𝑖

are the anomalies of the observed and
forecasted values at time step 𝑖, 𝑂

′
and 𝐹′ are the means

of the observed and forecast anomalies, and 𝑛 is the total
number of time steps. Other skill measures, such as the
Root Mean Square Error Skill Score (RMSEss), have also
been evaluated (Section 4); since they give similar results,
they are not included in the main text. However, some
of the most relevant results can be found in the Online
Supplemental Material.

In addition, the sharpness and reliability of the KEFs
are assessed using reliability diagrams that evaluate the
categorical prediction of El Niño and La Niña events, de-
fined as the months lying in the upper and lower terciles of
the Niño 3.4 model observations. Reliability diagrams are
graphical tools used to assess the calibration of probabilis-
tic forecasts by comparing predicted probabilities against
observed frequencies, typically grouped into bins. In this
study, the forecast probability of an event (El Niño or La
Niña) is computed as the fraction of ensemble members
predicting that event at a given lead time. Specifically,
for each forecast initialization, we count the number of
ensemble members classifying the event as occurring and
normalize by the total number of ensemble members, yield-
ing a probability between 0 and 1. The observed frequency,
in contrast, represents the fraction of times the event ac-
tually occurs in the verification dataset when the forecast
probability falls within a given bin.

A well-calibrated model will show observed frequencies
closely matching predicted probabilities, and therefore the
reliability will lay close to the diagonal. In other words,
if the forecast model predicts a 60% chance of rain, the
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observed frequency of rain should be close to 60% for in-
stances where the model made similar predictions. If the
observed frequencies consistently deviate from the pre-
dicted probabilities across different bins, it suggests that
the forecast model may be poorly calibrated. This tool
is very useful for detecting systematic biases, helping to
improve the accuracy and reliability of forecast models.

4. Spectrum of Tropical SST data

To assess the stability of the Koopman operator esti-
mates, we start by analyzing the eigenvalue spectra ob-
tained from two independent 1000-year subsamples of the
dataset (K1000). Figure 1 presents the spectral distribu-
tions for both subsamples, where the first and second rows
refer to the first and second sub-samples of the data. The
first column shows the spectra retrieved using the Gaus-
sian kernel and all EOFs (Gaussian-ALL from now on).
The coloring of the dots is proportional to the norm of the
corresponding mode, which gives a measure of their con-
tribution to the explained variance. These distributions are
compatible with a chaotic system with a partial continuous
spectrum, where the continuous part is often associated
with chaotic behavior. However, we cannot rigorously de-
termine whether the observed spectrum is genuinely con-
tinuous or consists of a dense set of discrete eigenvalues,
as our numerical methods do not allow us to distinguish
between these cases. The eigenvalues inside the unit circle
(module <1) represent modes with decaying amplitudes
over time, which in the context of ENSO may be associ-
ated with transient dynamics. Some eigenvalues lie close
to the unit circle but not exactly on it, indicating quasi-
periodic behavior. Note that there are as many non-zero
eigenvalues as time-steps used for its computation, inde-
pendently of the number of spatial degrees of freedom.
The second column shows the eigenvalues obtained using
the linear kernel. Due to the EOF truncation, only 30 of
them are different from zero, corresponding to the num-
ber of degrees of freedom of the covariance matrix. Had
all the EOFs been retained, we would have retrieved the
same number of eigenvalues as in the Gaussian example
(Xu et al. 2024).

The third column of Figure 1 shows the density of
eigenvalues retrieved from the Gaussian kernel (blue
line) and the discrete linear eigenvalues (red lines) for
each sub-sample. The eigenvalue density is estimated
using Kernel Density Estimation (KDE) with a Gaussian
kernel. Specifically, the imaginary parts of the logarithm
of the eigenvalues are used to estimate the probability
density function of the eigenvalue distribution along the
frequency axis. The resulting density function represents
the number of eigenvalues per frequency band. Several
local maxima in the density function can be identified in
Figure 1, which highlight dominant frequency components
(Navarra et al. 2024). While both sub-samples share

similarities, such as peaks around the 3-4 and 1.5-year
periods, they also exhibit significant differences in the
number and position of density peaks. In particular, the
number and position of peaks vary significantly between
sub-samples, indicating a degree of uncertainty in the
spectral estimation. This variability is also reflected in
the Gaussian eigenvalues (first column), which show
distinct distributions depending on the data subset used.
As the eigenvalues do not appear consistently for different
samples of the data, which should be expected for data
coming from the same dynamical system (see more in
Figure 2), we define them as non-robust. In contrast,
the shape and distribution of the linear spectrum is more
stable, suggesting that 1000 years are sufficient for robust
linear estimations of the Koopman operator.

Shorter data records make this robustness issue worse,
as shown in Figure 2, which presents composites of the
eigenvalues for Koopman operator estimates computed us-
ing different record lengths, i.e. two K1000, five K200,
etc. The number of eigenvalues in each panel is equal to
24.000 (the total number of time-steps in the time series,
but note that in the case of the linear kernel just 30 of
them per operator are different from zero). However, there
is increased spread across sub-samples for shorter data
records, with the eigenvalues showing weaker robustness
and convergence properties. When the linear kernel is used
(lower row) the spread becomes notable only for shorter
data spans. Further analysis including all lengths (1000,
400, 200, 100, and 50 years; see Supplemental Material
Figure 1) confirms that the uncertainty of the eigenvalues
increases when reducing the operator’s length. Also the
number of damped Gaussian eigenvalues increases as the
record length shortens. As we know that the eigenvalues of
a bounded system should lie close to the unit circle, this can
be seen as the uncertainty of the estimated eigenvalues in-
creasing for shorter data records. However, non-negligible
errors (intended as variations in the computed eigenvalues
as the training interval is varied) are retrieved even for very
long record lengths (1000 years).

5. Koopman Ensemble Forecasts

To address the lack of robustness in estimated Koopman
operators, we propose the Koopman Ensemble Forecasting
(KEF) approach. This method combines forecasts from
multiple operator estimates into an ensemble, reducing
sampling uncertainty.

To evaluate the effectiveness of the KEFs, we apply the
K200 operators to predict the Niño 3.4 index. Figure 3
shows the KEF forecast for the first 100 years of the Niño
3.4 CESM2 data (Gaussian kernel in the left column, linear
on the right). Each of the 9 thin red lines represents one of
the KEF members; the thick blue line is the KEF mean and
the gray one is the Niño 3.4 model observation. The ACC
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Fig. 1. Koopman spectra of the two possible 1000-yrs subsamples. The first two columns show the eigenvalues using the Gaussian (all EOFs)
and the linear kernels respectively. The coloring of the dots is proportional to the norm of the corresponding mode of the Koopman operator. The
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between the KEF mean and the model observations, and
the averaged ACC between each one of the KEF members
and the observations, are shown in the lower part of each
panel.

In the linear case, the KEF members remain notably
robust even for long lead times (as the spread among them
is small), while the Gaussian members present a wider
spread starting from early leads. Even if the averaged
ACC of the KEF members are almost identical for the
linear and Gaussian kernels, the KEF mean of the Gaussian
kernel has notably higher ACC. This suggests that there
is non-linear predictability that can be captured by the
Gaussian Koopman operators, despite their inherent lack
of robustness.

The Gaussian KEF mean consistently outperforms
individual ensemble members, whereas the improvement
in the linear case is less pronounced. This is illustrated
in Figure 4 (left and middle panels), which shows the
Niño 3.4 ACC of the KEF mean (thick lines) and the
spread of the KEF members (light shaded area) for the
Gaussian-ALL and linear kernels using the K200 operators.
The increase in skill for the Gaussian KEF mean is greater
for operators trained on shorter data records (for example
the K50 operators, see Supplemental Material Figure 2), as
the uncertainty in their eigenvalues is greater and there is a
better chance for improvement than in the case of operators
trained on longer records. In contrast, the linear kernel
retrieves robust spectra even when trained on shorter
lengths, so its skill improvement from the ensemble
approach is less notable. Further analysis regarding the
comparison between the Gaussian kernel using all EOFs

(Gaussian-ALL) versus 30 EOFs (Gaussian-30), demon-
strates an overall better performance for the former one,
suggesting that the Gaussian kernel yields better results
when applied upon the full, rather than truncated state
space. This result aligns with expectations, as non-linear
kernels are designed to capture the non-linearities inherent
in higher-dimensional subspaces of the dynamical system.

The KEF mean and member 𝐴𝐶𝐶 results for the K200
are shown in the right panel of Figure 4. Solid lines
feature the lead-dependent skill of the KEF mean, while
the dotted ones represent the averaged 𝐴𝐶𝐶 of the KEF
members. Following the previous results, the Gaussian-
ALL KEF members 𝐴𝐶𝐶 outperforms both the linear and
Gaussian-30 approaches. However, the most interesting
results appear for the KEF mean’s performance, where
the Gaussian-ALL kernel remains over the 0.6 𝐴𝐶𝐶 mark
almost 4 months longer than the linear counterpart, with
greatest improvement between 11 and 18 leading months,
presenting gains over 0.15.

A comprehensive analysis including all the different
lengths of Koopman operators has been carried out to in-
vestigate the behaviour of the ensembles depending on the
operator’s length. The results demonstrate that linear KEF
means perform very similarly among them irrespectively
of their length, with only the K50 forecasts performing
slightly better than the others after the 12 month lead-time
mark. This marginal improvement of the operators com-
puted over very short periods might be dependent on the



8

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Im
Gaussian-ALL 1000 yrs 200 yrs 50 yrs

1.0 0.5 0.0 0.5 1.0
Re

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Im

Linear 1000 yrs

1.0 0.5 0.0 0.5 1.0
Re

200 yrs

1.0 0.5 0.0 0.5 1.0
Re

50 yrs

Fig. 2. Composite eigenvalue spectrum for different lengths of the operators (1000, 200 and 50 years). The first row shows the eigenvalues
retrieved using the Gaussian kernel and all EOFs (Gaussian-ALL), while the second the ones obtained using the linear kernel. Each color represents
the spectrum of a different sub-sample (i.e. yellow and purple for each one of the two 1000 years samples, first column). Note that total number
of dots (and therefore eigenvalues) in each panel is the same. However, in the case of the linear kernel, just 30 of them per operator are nontrivial
(different from zero).

mean differences across the different chunks of data, as the
used EOFs have been computed for the total data series.

The Gaussian KEFs show particularly notable im-
provements, with consistent enhancements over the linear
case across all lead times and operator lengths. For the
best-performing KEFs (K200 and K400), 𝐴𝐶𝐶 gains of
up to 0.15 are observed around the 15-month lead time.
Additionally, the distribution of 𝐴𝐶𝐶 behavior varies
depending on operator length, with K400, K200, and
K100 KEFs showing similar 𝐴𝐶𝐶 values across all lead
times and outperforming the K1000 and K50 KEFs. This
suggests the presence of an optimal-skill pseudo plateau
for certain operator lengths, where performance remains
nearly constant.

To determine how operator length affects forecast skill,
we compare the 𝐴𝐶𝐶 of the KEF mean and ensemble
members at a 12-month lead time. Figure 5 displays the
ACC of the KEF mean and members at the 12 month
lead time for different operator lengths (50, 100, 200,

400, and 1000 years). The orange lines represent the
skill of the KEF members, which increase with the length
of the operators. Namely, the Gaussian KEF members
computed over 1000 years of data perform better than
those computed with 400, followed by the 200-years
ones and so on, indicating that single operators perform
better when longer records are used for their computation.
On the other hand, the Gaussian KEF means (solid
and dashed blue lines) show a fundamentally different
behaviour, reflecting an optimal point surrounded by a
pseudo-plateau between the 100-400 years of operator
length (for the Gaussian-ALL case). This behaviour is
similarly observed for other lead times (9 and 15 months,
see Supplemental Material Figure 4), determining slightly
better results for the K200 KEFs. Therefore, the K200
forecasts will be used as reference from now on (if not
stated differently). It is important to note, though, that the
location of the optimal record length will depend on the
length of the total available data. For the 2000 years that
CESM2 provides, it is located around the 100-400 years.
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Fig. 3. Niño 3.4 index example of the linear and Gaussian-ALL KEF made with the K200 (200-years operators) for the first 100 years of the
CESM data. The grey lines are the model observations, while the red thin lines represent each one of the ensemble members and the blue thick line
is the ensemble mean (namely the average of all the red lines). The KEF mean and members ACC, where the KEF member ACC is the averaged
ACC of each one of the KEF members, are present in the lower left corner of each panel.

The location of that optimal length for shorter training
records is be investigated in Section 8.

6. SST spatial correlation patterns

While the ensemble forecasting approach improves the
skill of Niño 3.4 predictions, it is also important to assess
the spatial performance of the forecasts across the tropical
Pacific. To understand how the choice of kernel affects

regional forecast skill, we compare the spatial distributions
of 𝐴𝐶𝐶 between the Gaussian-ALL and linear KEF means.

The left panel of Figure 6 presents the spatial distri-
bution of the Gaussian-ALL KEF means for the K200
operator, while the right one shows the 𝐴𝐶𝐶 difference
between the Gaussian-ALL and linear KEF means. The
solid and dashed gray contours represent the 0.99 and 0.95
confidence levels. The skill gain of the Gaussian-ALL
kernel is consistent and widespread across the spatial
domain, with large regions exceeding 0.1. Strong skill
gains are present around the equatorial belt, especially
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Fig. 5. ACC of the KEF mean and members at the 12 month lead
time for the different lengths of the operators used (50, 100, 200, 400
and 1000 yrs). The plotted skill for the KEF members is the mean skill
of all the KEF member forecasts.

at longer lead times, where 𝐴𝐶𝐶 gains of up to 0.3 are
present. In addition, arrow-shaped gains of up to 0.2 are
present in the western Pacific area including the Western
Pacific Warm Pool (WPWP), typically known for the poor
performance of both GCMs and data-driven traditional
methods (Lin et al. 2023). These features hold for the
K100 and K400 forecasts, while the K1000 and K50 ones
present much poorer improvements (not shown).

Regarding the skill of the entire SST anomaly, Figure
7 shows the spatial pattern correlation as a function of

lead time. It has been computed by flattening the spa-
tial SST anomaly fields into vectors and then calculating
the Pearson correlation coefficient between the forecasted
and observed vectors at each lead time. This provides a
measure of the similarity between the spatial structures of
the forecasted and observed SST anomalies over time. The
solid lines represent the KEF mean 𝐴𝐶𝐶, while the dashed
ones feature the averaged 𝐴𝐶𝐶 of the KEF members. The
improvements of the Gaussian KEF mean over the linear
counterpart are consistent over the lead time range, but
particularly relevant for long lead times. For instance, the
Gaussian KEF mean skill exceeds 0.4 correlation for three
months longer than the linear one, demonstrating that our
approach also improves SST pattern predictions.

7. El Niño/La Niña events

There are numerous long term ENSO events whose
evolution is better captured by the Gaussian kernel.
Notably, many of them are among the strongest El Niño/La
Niña events through the model data. Figure 8 shows
composite Hovmoller diagrams for the development of
the 1% strongest La Niña events (peak taken as the 240
strongest negative monthly Niño 3.4 index cases). The left
panel shows the model observations starting 12 months
before the peak of the events. The middle panel show the
Gaussian-ALL KEF mean initialized 12 months before
the peak of the events, and the right one the difference
between the Gaussian-ALL and linear KEF means. The
color shadings represent SST anomalies, and the contours
SSH ones. Note that two different temperature and altitude
scales have been chosen (for the observations and forecast,
respectively) to better display the long-lead forecasts
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which present lower amplitudes than the observations.

The Gaussian KEF in Figure 8 demonstrates better skill
representing the dynamics of extreme La Niña cases, cap-
turing key features that the linear one struggles with. In
particular, the Gaussian KEF represents better the La Niña
peak, including the spatial distribution of stronger negative
anomalies over the western Pacific. A more detailed analy-
sis considering the entire domain (the Hovmoller diagrams
comprise only the 5ºN-5ºS band) shows pattern correla-
tions between the predicted and observed SST composites
above 0.6 for leads up to 15 months, as well as a better
representations of the extension of La Niña into the tropi-
cal regions (see Supplemental Material Figure 5). Also the
amplitude of the event is larger in the Gaussian KEF, better
matching the model observations. The linear KEF repro-
duces much weaker and very equatorially confined La Niña
events (also in Supplemental Material Figure 5), with no
temperature differences between the eastern and western
Pacific. The evolution of the SST anomalies is also better
represented with the Gaussian KEF, with negative anoma-
lies starting 9 months before the peak (lead time 3) that pro-
gressively grow into a western peak, matching the model
observations. In contrast, the linear forecast struggles with

timely depiction of the SST negative anomalies, as well as
with the ENSO discharge. The difference patterns indicate
that the Gaussian approach better captures the strength-
ening and decay of positive SST anomalies, suggesting an
improved representation of the state-dependent growth and
decay processes characteristic of ENSO.

In contrast, both approaches have more difficulty pre-
dicting the 1% strongest El Niño events (Figure 9). Al-
though the full composite SST fields still show some im-
provements of the Gaussian kernel over the linear one
(0.61/0.50 pattern ACC for the Gaussian and linear ker-
nels at the peak, respectively), the overall ACCs are much
lower than for La Niña cases (see Supplemental Mate-
rial Figure 6). Figure 9 shows that both kernels tend to
predict the peak of ENSO events too early, a common lim-
itation in statistical and dynamical forecasts, and they are
shifted well to the west. However, the Gaussian model
exhibits a reduced bias, delaying the peak less compared
to the linear model and better aligning with observations.
Additionally, the Gaussian-based model shows noticeable
improvements in representing SST anomalies in the west-
ern Pacific warm pool region, where nonlinear interactions
between oceanic and atmospheric processes play a crucial
role in ENSO dynamics. The enhanced representation of
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these processes suggests that the Gaussian kernel captures
important nonlinear feedbacks that are relevant for accu-
rately modeling ENSO evolution. These errors are con-
siderably smaller when the forecasts are initialized closer
to the peak, especially for the Gaussian kernel. Gaussian
forecasts initialized 6 months before the peak show a much
better depiction of the development of ENSO, as well as a
noticeable improvement of the skill over the WPWP, with
reduced overestimation of SSTs during warm events.

Overall, the Gaussian KEFs represent better the
evolution of extreme ENSO events, but the amount of
improvement depends on the sign of the anomaly and the
lead time of the event. Long lead improvements (up to
15 months) are present for La Niña extreme events, in
agreement with the findings that long lead La Niña events
coming out of El Niño are better credited than other kind
of ENSO events (Lenssen et al. 2024). In contrast, the
horizon for improved predictions is much shorter for El
Niño events. The underlying reasons for this asymmetry
require further investigation.

In order to assess the accuracy of our El Niño and
La Niña forecasts we use reliability diagrams (Fig.10),
which are graphical tools used to evaluate probabilistic
forecasting systems by comparing predicted probabilities
to observed frequencies. The orange and blue dots
represent the observed frequencies of El Niño and La
Niña events depending on its forecasted probability

(from zero to one, divided in 0.2 bins). The thresholds
used for the classification of the observed frequency
and forecast’s probability have been chosen as the top
and bottom terciles of the Niño 3.4 model observations.
The diagonal line from the bottom-left to the top-right
represents perfect reliability. Points above the diagonal
indicate underconfidence, where the predicted probability
is lower than the observed frequency, while points below
the diagonal indicate overconfidence, with predicted
probabilities higher than the observed frequencies. A
histogram showing the distribution of the forecast prob-
abilities is included at the bottom, helping to visualize
the number of cases used for each reliability point. The
vertical error bars represent the margin of error (MoE),
and they indicate the range within which the true observed
frequency is likely to fall given the sample size and the
data variability. Bins with very small sample sizes present
large margins of error, while they become negligible in
bins with large populations. Finally, the horizontal red and
blue dotted lines represent the climatological frequency of
El Niño and La Niña events. It is important to note that in
our application, these diagrams evaluate the probabilistic
forecasts coming from KEFs, meaning that they represent
the uncertainty arising from the operator’s estimations,
and not from the initial condition uncertainty.

The diagrams have been evaluated at the 0, 6, 12 and 18
month lead times, with both kernels showing decreasing re-
liability with increasing lead times. The reliability points
become increasingly apart from the diagonal line as the
lead time increases, with low probability forecasts becom-
ing underconfident and high probability ones becoming
increasingly overconfident. However, the Gaussian kernel
consistently outperforms the linear one in terms of relia-
bility, as evidenced by the closer alignment of its forecast
probabilities with observed frequencies starting from the
6 month lead time. This is particularly notable at longer
lead times, where the linear kernel approaches the clima-
tology lines much faster than the Gaussian ones. In fact,
the Gaussian kernel yields very reliable forecasts, particu-
larly for the 6 and 12 months. These results hold both for
the El Niño and La Niña events, but La Niña events present
slightly higher reliability all across the board, both for the
linear and Gaussian kernels, following the results shown
in Figures 8 and 9, but also state-of-the-art studies stating
that the transitions to La Niña are more predictable than
those to El Niño (Sharmila 2023).

The histograms accompanying the reliability diagrams
illustrate the distribution of forecast probabilities. The
Gaussian KEF exhibits a broader spread of forecast proba-
bilities, whereas the linear kernel produces a more concen-
trated distribution, with most cases belonging to the lowest
(0-0.2) and highest (0.8-1) bins. This can be explained in
terms of sharpness and reliability. Following the precedent
discussions, the forecasts made with the linear kernel are
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Fig. 8. Hovmoller diagram of the SST and SSH composites of the development of the 1% strongest La Niña events (peak taken as the 240
lowest monthly Niño 3.4 index cases). The color shadings represent SST, units in Kelvin degrees. The solid and dashed contours, the positive and
negative SSH values, units in meters. The latitude averages have been taken over the -5 to 5 degrees north and south. The left panel shows the
model observations starting from 12 months before the peak of the event. The middle one shows the forecasts made with the K200 Gaussian-ALL
kernels, and the right one the different between the Gaussial-ALL and the linear one. The forecasts are initialized 12 months before the peak of the
event (month zero), and the peak is indicated by the horizontal dashed line.

Fig. 9. As Figure 8, but for the 1% strongest El Niño events (peak taken as the 240 highest monthly Niño 3.4 index cases).

more robust, leading to sharper probabilistic distributions
but less reliable forecasts. On the other hand, the Gaussian
forecasts are less sharp, but present more reliable fore-
casts. This difference is particularly meaningful at the 0
lead time. The linear kernel does not present any case
outside the 0 and 1 probabilities, meaning that all the fore-

cast agree in their ENSO outcome. The Gaussian kernel,
though, does not yield a perfect reconstruction of the initial
conditions, leading to a small fraction of events presenting
mixed forecasts (probabilities different from 0 or 1). As
sample size in these bins is very small, the MoE bars are
very large, indicating high uncertainty in the reliability.
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Fig. 10. Reliability diagram of the Niño 3.4 forecasts made with the K200 using the linear (top row) and Gaussian-ALL (bottom row) kernel
configurations for the 0, 6, 12 and 18 months lead time. The orange and blue dots represent, respectively, the observed frequency of El Niño and
La Niña events depending on the event’s forecasted probability. The threshold used for the classification of both the observed frequency and the
forecast’s probability has been chosen as the top and bottom terciles of the model observations data. The error bars have been computed using the
margin of error (MoE). The horizontal red and blue dashed lines represent the climatological frequency of El Niño and La Niña events, and the
histograms the distribution of cases belonging to each probability bin.

However, and even when taking the MoE into account, the
Gaussian kernel presents underconfident representation of
both the El Niño and La Niña events when reconstructing
the initial conditions. The initial bias gradually dissipates
over time, demonstrating enhanced reliability as early as
six months into the forecast horizon. It is important to note,
though, that these reliability diagrams have been computed
using the same threshold for the observed frequency and
the forecast probability. If different terciles had been con-
sidered (one coming from the observed data and one from
the forecasts, as usually done when computing reliability
diagrams) this bias at zero lead time would not appear.

8. Application to shorter data records

To better match the length of the available observed
data records, we have repeated the analyses of Section 5
restricting the data to 150 years in length. The Koopman
operators are now computed from subsamples with new
lengths of 15, 25, 30, 50 and 75 years. This process was
carried out for all the possible non-overlapping samples
of data (leaving outside the last 50 years), and the results
averaged in a cross-validated way. Following previous
results, the Gaussian KEF means outperform the linear
ones, especially for the lead times ranging between 9 and 18

months. The results for the Niño 3.4 ACC at the 12 month
lead time are presented in the right panel of Figure 11
(solid lines). The results reflect similar properties to Figure
5, with an optimal distribution of the data that presents
a pseudo-plateau. However, the best performances are
located between the K25 and K50 KEFs, in contrast with
the K100/K400 range of the 2000 years long total series.
As expected, the position of the peak has been relocated
depending on the length of the total available data, as well
as the magnitude of the skill gain.

The dependence of the skill gain on the total available
data is featured in the left panel of Figure 11, where the
Niño 3.4 ACCs of the best Gaussian KEF means are
presented for 4 different lengths of total available data
(150, 200, 400 and 2000 yrs, solid lines). The coloured
dots indicate the intersection points of the forecasts skill
with the 0.6 ACC line. The best performing gaussian KEF
for the total 2000 years of available data is K200, while it is
K30 for 150 years of total available data, K50 for 200 and
K100 for the 400 years one. The skill gain of the Gaussian
KEF over the linear one is proportional to the total data
record too. For the total length of the data (2000 years),
the best Gaussian KEF hits the 0.6 ACC mark more than
4 months later than the linear one. This is reduced to 3
months for a data record of 400 years, slightly less than 2
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Fig. 11. Left panel: Niño 3.4 index anomaly correlation of the best forecast ensemble mean using the Gaussian-ALL configuration for 4 different
lengths of total available data (150, 200, 400 and 2000 yrs). The forecasts have been computed using total sub-samples of those lengths. The ACC
of each period has been subsequently averaged to be represented in this figure. Solid lines and dashed lines represent, respectively, the Niño 3.4
ACC computed with the Gaussian-ALL and linear kernels. The coloured dots indicate the point where each forecast intersects the 0.6 ACC line.
Right panel: ACC of the KEF mean at the 12 month lead time for the different lengths of the operators (15, 25, 30, 50 and 75 yrs) computed over a
total available period of 150 years. The solid and dashed lines represent, respectively, the linear and Gaussian-all KEF mean using non-overlapping
operators. The dashed lines represent the KEF mean computed adding (n/2)-1 overlapping operators shifted half the length of the original ones,
where n is the number of original non-overlapping operators.

months for 200 years and around just one month for the
150 years time series, reaching the 0.6 ACC mark around
the 11 months lead mark.

In addition, there is a trade-off between the number of
members and the length of the operators used for the fore-
cast. We are interested into exploring if it could be possi-
ble to improve the forecasts skill by increasing the number
of the ensemble members while maintaining their length.
This can be done adding overlapping operators, specially
for the K50 and K75 forecasts, where the number of mem-
bers is very low. Therefore, (n/2)-1 overlapping operators
have been computed by shifting the starting time-step half
the length of the original ones, where n is the number of
original non-overlapping operators. For example, the K75
KEF will have 3 members instead of 2; the K50 KEF will
have 5 instead of 3, and so on. The overlapping KEF ACC
at lead time 12 is represented by the dashed lines in the left
panel of Figure 11. Although the ACC gains are limited,
there are small improvements, particularly for the smaller
KEFs, namely those with longer operators: K50 and K75.
In fact, after adding the overlapping operators, the Gaus-
sian K50 slightly outperforms the K30 and K25 forecasts.
Contrarily, little or no gain is added by the overlapping op-
erators to the shorter Gaussian KEFs, neither to the linear
ones. Overall, and even if the the skill gain is reduced,
adding overlapping operators can be a tool for improving
the KEFs skill when we face reduced data availability.

9. Conclusions

A key finding of this study is the strong sensitivity of es-
timated Koopman operators to data availability and record
length. With Gaussian kernels, even 1000-year records
exhibit robustness issues, and still shorter ones lead to in-
creased uncertainty and reduced forecast robustness. This
poses a challenge to the use of the Koopman framework
for climate forecasting, particularly given the limited length
of the observational records. To address this problem, we
introduce Koopman Ensemble Forecasts, which employ
ensemble techniques to mitigate sampling uncertainty and
improve forecast robustness. Results indicate that KEF
means consistently outperform individual Koopman fore-
casts, particularly for longer lead times. In addition, by me-
thodically sub-sampling the data record, we gained insight
into the optimal approach for maximizing forecast skill de-
pending on the total length of available data, demonstrat-
ing the existence of an optimal point with a pseudo-plateau
around it.

Furthermore, the spatial analysis of Pacific SST forecasts
reveals significant skill gains when using the Gaussian ker-
nel, especially in regions known for their challenging pre-
dictability, such as the WPWP. Although these results have
been empirically retrieved from a perfect model, and might
not perfectly reflect the dynamics of the real-world ENSO
system, they hint the ability of the Koopman nonlinear
methods in capturing complex SST patterns.
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In addition, the evaluation of El Niño and La Niña event
forecasts through reliability diagrams highlights the higher
performance of the Gaussian kernel, particularly from the
six-month lead time onward. Also the study of the devel-
opment of extreme events yields notable results. In par-
ticular, asymmetries between positive and negative phases
of ENSO are successfully represented within the Gaus-
sian kernel, facing one of the major drawbacks that linear
models present for ENSO modelling. This leads to bet-
ter dynamical representation, particularly in the case of
La Niña events, resembling more accurately both the spa-
tial distribution of SSTs and the timeline of the phenom-
ena. In addition, the forecasts keep their skill up to long
lead times and seem to overcome the spring predictability
barrier, which are two of the main challenges that most-
commonly used non-linear data-driven methods present
for ENSO forecasting (Wang et al. 2023; Fang et al. 2022).
However, both kernels exhibit struggles for the extreme
El Niño events representation, especially for longer lead
times (from 6 months ahead the peak). The reasons for the
notably different behaviour between positive and negative
extreme phases would need further investigation.

Some additional challenges still need to be faced, in par-
ticular regarding the method’s applicability to operational
forecasting settings. The results from this study come
from the analysis of CESM2 data. Although some of the
main behaviors might hold for observations, we cannot
assume that the optimal points and skill levels found will
hold for observational records, where the dynamics could
be more complex and both forcing and observational
biases need to be taken into account. Moreover, in
order to face our method with the state-of-the-art LIM
frameworks, we would need to compare it to models
such as the cyclo-stationary LIMs, allowing us to assess
to which extent do our skill improvements come from
purely nonlinear dynamics and which can be attributed
to the explicit inclusion of the seasonal cycle instead.
In addition, the comparison to other nonlinear kernels
might be an interesting topic of study, exploring if they
could help overcoming some of the limitations found
here. Finally, but not less important, there are intrinsic
challenges in the determination of robust estimates of
the Koopman operator, particularly in shorter data spans,
signaling avenues for further refinement of both the
algorithms and forecasting frameworks.

Overall, this study helps to frame some of the potential
features of Koopman theory for advancing ENSO fore-
casting. By addressing the limitations of traditional linear
models and introducing nonlinear dynamics, Koopman-
based approaches offer a pathway towards more accurate
and reliable climate predictions, with significant impli-
cations for several societal sectors dependent on climate
information. A key focus of our work is the fundamen-
tal question of data sensitivity—how much data is actu-

ally needed to obtain robust Koopman operator estimates?
We show that employing ensemble techniques can effec-
tively help to mitigate the uncertainty associated with data
limitations when using nonlinear Koopman estimations,
yielding enhanced forecast performances compared to the
linear benchmark. Moreover, we present an approach to
determine the most efficient way to employ the available
data in order to optimize the ensemble’s skill. Yet, mul-
tiple challenges remain, particularly regarding the impact
of sampling uncertainty in shorter data spans, warranting
continued research in this topic.
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APPENDIX A

k-EDMD algorithm for Koopman Spectrum
Estimation

It was not until the last decade when Williams et al.
(2015) and Klus et al. (2018, 2019) demonstrated that the
eigenvalues and eigenmodes of transfer operators can be
estimated from data using EDMD-type algorithms. As-
suming we have a dataset that describes the temporal evo-
lution of a dynamical system, we can organize the data as
follows

X =
[
𝑥1, 𝑥2, · · · , 𝑥𝑚

]
(A1)

where the vectors 𝑥𝑖 of length n describe grid-point
values of representative physical fields of the system at 𝑚
different time-steps, which are lagged by a discrete time
interval of 𝜏. In this way, the discrete data represents the
sampled evolution of the system according to the unknown
dynamical operator F. This organization of the data is
similar to the one used in some traditional methods, such
as LIMs or singular spectra analysis, where various forms
of regression are used involving time covariance matrices
(C𝑥𝑥 = ⟨x𝑖 ,x 𝑗⟩) of the data at different lag times Penland
and Sardeshmukh (1995).

For the Koopman framework we adopt a slightly differ-
ent approach. Instead of using covariance matrices we use
Gramian matrices

G𝑥𝑥 = [𝑘 (x𝑖 ,x 𝑗 )]
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G𝑦𝑥 = [𝑘 (y𝑖 ,x 𝑗 )]

where 𝑘 is the chosen feature kernel and 𝑦𝑖 are the com-
ponents of the lagged vector:

Y =
[
𝑦1, 𝑦2, . . . 𝑦𝑚

]
=
[
𝑥2, 𝑥3, . . . 𝑥𝑚+1

]
The Gramian matrices can be used to set up the following

eigenvalue problem

(G𝑥𝑥 +𝑛𝜖 𝐼)−1G𝑦𝑥w = 𝜇w (A2)

where (G𝑥𝑥 +𝑛𝜖 𝐼)−1G𝑦𝑥 is known as the auxiliary ma-
trix 𝐴 and 𝜖 is a regularization parameter added to ensure
that the inverse exist, particularly when dealing with finite
datasets or highly correlated data points. The choice of
𝜖 is crucial for balancing numerical stability and spectral
accuracy. A too-small 𝜖 can lead to near-singular matrices,
causing numerical instability in eigenvalue computations.
Conversely, a too-large 𝜖 can excessively dampen small
eigenvalues, distorting the spectral properties of the Koop-
man operator. For this work, a 𝜖 of 108 has been chosen,
with no relevant changes when ranging it from 106 to 1010.

The eigenvalues of the auxiliary matrix (µ) are the es-
timated eigenvalues of the Koopman operator, while its
eigenvectors w can be used to determine the values taken
by the eigenfunctions at the data points Φ(𝑋) Klus et al.
(2019):

Φ(𝑋) = G𝑥𝑥W, (A3)

where the columns of W are the eigenvectors w.

The outputs of the algorithm are the estimated Koopman
eigenvalues µ, the matrix Φ(𝑋) of the values taken by the
eigenfunctions 𝜙𝑖 (x 𝑗 ) at the sample points

Φ(𝑋) =

𝜙1 (x1) 𝜙2 (x1) 𝜙3 (x1)
𝜙1 (x2) 𝜙2 (x2) . . .

𝜙1 (x3) . . . . . .

 (A4)

and the coefficients 𝑤𝑖𝑘 , which are used for the expan-
sion of the eigenfunctions in the feature functions derived
from the kernel. With these outputs we can compute
the Koopman modes. Having a vector-valued observable
g = [𝑔1, 𝑔2, 𝑔3, . . .]𝑇 that takes values on the sample points:

𝐺 (𝑋) =

𝑔1 (x1) 𝑔1 (x2) 𝑔1 (x3)
𝑔2 (x1) 𝑔2 (x2) . . .

𝑔3 (x1) . . . . . .

 (A5)

the Koopman modes V of the state vectors are obtained
by projecting the matrix of the observable’s values on the
eigenfunctions Mezic and Surana (2016):

𝑉 = Φ(𝑋)+X, (A6)

where + denotes the pseudoinverse of a matrix: a
generalization of the inverse matrix that can be applied
to matrices that are not necessarily square or invertible,
computing a ”best fit” (least squares) approximate solution
to a system of linear equations that lacks an exact solution.

The estimated evolution of the dynamical system de-
scribed by the data set is then given by (cf. Eq. 5):

x(𝑡) =
∑︁
𝑘

v𝑘𝑒
(𝜎𝑘+𝑖𝜔𝑘 )𝑡𝜙𝑘 (x) (A7)

=
∑︁
𝑖𝑘

v𝑘𝑒
(𝜎𝑘+𝑖𝜔𝑘 )𝑡𝑤𝑘𝑖 𝑝𝑖 (x) (A8)

It is important to notice that the choice of the kernel
determines the class of functions used to approximate the
Koopman operator. If the standard inner product is used,
we restrict the function space to linear functions. In this
case, the Gram matrices become G𝑥𝑥 = ⟨x 𝑗 ,x𝑖⟩ and G𝑦𝑥 =

⟨y 𝑗 ,x𝑖⟩, containing the same information as the covariance
matrices used in LIMs. The eigenvalues and eigenfuctions
found in this setting are equivalent to those retrieved by
LIM algorithms Tu (2013); Tu et al. (2014); Navarra et al.
(2021). However, the Gram and covariance matrices have
different dimensions. The dimension of the covariance
matrix is given by the spatial length of the data, while
for the Gramian by the length of the time series. As a
consequence, the Koopman operator framework produces
a much higher number of eigenmodes. When using a
linear kernel (and a truncation of the state space, which
is usually needed), most part of them equal zero, yielding
a final number of non-trivial modes equal to the spatial
dimensionality of the system and collapsing to the LIM
results.
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