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Key Points: 8 

• A new pattern-based method to isolate a trend with structure-like natural variability is 9 

applied to short global sea surface data records. 10 

• The method can identify ensemble-mean forced trends within large climate model 11 

historical simulations from any single ensemble member.  12 

• The observed sea level trend from 1993-2020 is everywhere positive, but its time series 13 

increases nonsteadily, pausing in the early 2000s.  14 
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Abstract 15 

In this study, we introduce a pattern-based empirical approach to estimate externally-forced signals 16 

from short observational records based on applying Gram-Schmidt orthonormalization to the set 17 

of Empirical Normal Modes (ENMs) determined by a Linear Inverse Model (LIM). This procedure 18 

improves upon the LIM’s least damped ENM (LDM) by removing its convolution with 19 

nonorthogonal modes of natural variability to represent the externally-forced signal. Applied to 20 

global sea level altimetry data, sea surface temperatures, and coastal tide gauge stations during the 21 

satellite observational era (1993-2020), this “optimized LDM” reveals a trend pattern that is 22 

everywhere positive, with higher values in the Pacific warm pool, Kuroshio-Oyashio extension, 23 

and the western portion of the North Atlantic basin. Coastal observations are consistent with this 24 

pattern, apart from a distinct vertical land motion signal. In contrast to previous analyses, however, 25 

we find no externally-forced sea level increase during the global warming “hiatus” period. 26 

 27 

Plain Language Summary 28 

In recent decades, coastal communities around the globe have experienced increasing frequency 29 

and severity of coastal flooding, raising the question of externally-forced signals’ contribution to 30 

such risk. Our newly developed pattern-based method to identify the global and regional forced 31 

signals shows that observed sea levels rose globally from 1993 to 2020, but its rate paused in the 32 

early 2000s. The largest rise in coastal sea level occurs for tide gauge stations along the North 33 

American east coast, while high-latitude stations show a decrease in sea level compared to the rise 34 

of the nearby ocean. Such a decrease in coastal sea level indicates a strong upward land motion 35 

since the tide gauge station measures a relative sea level to the local reference. 36 

 37 

1 Introduction 38 

Global mean sea level rose in the 20th century at an unprecedented rate, which doubled in the past 39 

few decades [e.g., Hamlington et al., 2024]. Sea level change is neither spatially uniform nor linear 40 

in time, within either past observations [e.g., Frederickse et al., 2020; Hamlington et al., 2022; 41 

Dangendorf et al., 2024] or future climate model projections [Bilbao et al., 2015; Fasullo and 42 

Nerem, 2018; IPCC, 2021]. These complex spatiotemporal changes will unevenly impact coastal 43 

communities around the globe by increasing the frequency and severity of flooding. Furthermore, 44 

uncertainties in how external forcing contributes to local sea level variations can impact the 45 

assessment of coastal flooding predictions made by operational seasonal forecast systems [Long 46 

et al., 2025]. Thus, identifying the externally-forced regional sea-level rise signals in both 47 

observations and models, especially along coastlines [e.g., Carson et al., 2016; Sweet et al., 2022], 48 

is critical for coastal planners and policymakers to anticipate sea-level impacts in their 49 

communities [e.g., Cazenave and Cozannet, 2014; Dusek et al., 2022]. 50 

Separating the externally-forced climate signals on global and regional scales from natural climate 51 

variability in short observational records is a critical challenge in climate dynamics [Solomon et 52 

al., 2011]. The fundamental issue is that natural climate variations can have spatial structures 53 

similar to those of the externally-forced pattern. To address this, two classes of global trend 54 



manuscript submitted to Geophysical Research Letters 

 

detection techniques have typically been employed: 1) direct estimation, or identifying a 55 

potentially nonlinear signal that, in some sense, evolves most slowly (e.g., a least damped 56 

dynamical mode [e.g., Penland and Matrosova, 2006; Solomon et al., 2011] or leading standing 57 

wave of the system [e.g., Vautard et al., 1992]); or 2) indirect estimation, in which the trend is 58 

determined as the remaining residual after identifying and removing modes of natural climate 59 

variability, often by using empirical orthogonal function (EOF) analysis [e.g., Ting et al., 2009; 60 

Wills et al., 2020]. However, EOFs represent the statistical decomposition of climate variability 61 

into an orthogonal set of patterns, which do not necessarily correspond to physical modes of 62 

climate dynamics [Monahan et al., 2009]. It may also be problematic to use EOFs in this manner 63 

if the pattern of externally-forced signals is not orthogonal to other natural climate modes.  64 

These issues are particularly concerning for identifying forced sea-level rise signals over the 65 

altimetry era, when the amplitude of regional variations was considerably larger than that of the 66 

global mean trend [e.g., Zhang and Church, 2012; Han et al., 2017; Fasullo and Nerem, 2018]. To 67 

date, sea-level trends have generally been calculated using only the indirect estimation approach 68 

[e.g., Richter et al. (2020); Hamlington et al. (2022), Dangendorf et al. (2024), and references 69 

therein], typically by estimating natural variability with a small set of EOFs, removing them from 70 

the data, and then fitting the residual with low-order polynomials (e.g., linear or quadratic). Of 71 

course, there is no particular physical reason for the change in sea level to be so simple, but on the 72 

other hand, EOF orthogonality constraints make it challenging to isolate the time series of a more 73 

complex forced response. 74 

In this study, we introduce a new empirical method that identifies the most slowly-varying spatial 75 

pattern, which we use to directly estimate global and regional sea-level trends over the relatively 76 

short, post-1993 satellite altimetry era from a combination of global SST and SSH fields and 77 

coastal tide gauge observations. Our approach is based upon the “least damped mode” (LDM) 78 

identified through linear inverse modeling [LIM; Penland and Sardeshmukh, 1995], which 79 

represents the system’s long-lasting standing wave; that is, the LIM eigenmode with the longest e-80 

folding time [Penland and Matrosova, 2006]. For sufficiently long records, the LDM can provide 81 

a good estimate of the global SST trend component [e.g., Newman, 2007, 2013; Frankignoul et 82 

al., 2017], but for shorter records, it can mix with other LIM eigenmodes [Frankignoul et al., 2017]. 83 

Our new “optimized LDM” technique removes the effects of other eigenmodes from the LDM, 84 

which we demonstrate following the approach of Frankignoul et al. [2017], who compared 85 

techniques for identifying the externally-forced trend within a large ensemble [LENS; Deser et al., 86 

2020] climate modeling framework. In a LENS, the ensemble mean can represent the externally-87 

forced signal since averaging reduces noise (i.e., internal climate variability) variance by the factor 88 

of ensemble size [e.g., Rowell et al., 1995]. Then, trend-detection techniques are applied to each 89 
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ensemble member separately, with the resulting trend estimates compared to the “known” forced 90 

signal. 91 

 92 

2 Techniques used to determine trend patterns and associated time series 93 

2.1 Least damped eigenmode of a LIM 94 

In the LIM framework [Penland and Sardeshmukh, 1995], climate anomalies evolve as: 95 

d

dt

x
xL ,         (1) 96 

where x  is the climate anomaly state vector, L  is a deterministic feedback matrix, and all 97 

unpredictable dynamics are approximated as a stochastic forcing vector . The feedback matrix 98 

can be determined by 1 1ln ( ) (0)L C C , where T( ) ( ) ( )t tx xC  is the lag covariance 99 

matrix at time lag . The empirical normal modes (ENMs; eigenvectors of L ; e.g., Penland and 100 

Sardeshmukh [1995]; von Storch et al. [1995]), their associated eigenvalues, and their adjoints 101 

(eigenvectors of TL ) define the deterministic feedback matrix L . Then, any state can be expressed 102 

as a sum over the ENMs: 103 

( ) exp( ) ( )
n n

j j j j j

j j

t c t z tx u u ,     (2) 104 

where jc  is a complex constant that depends upon the initial state, ju  is the j-th ENM, and j  is 105 

the corresponding eigenvalue. 
T( ) exp( ) ( )j j j jz t c t tv x  is the j-th ENM time series, and jv  is 106 

the j-th adjoint vector that satisfies T
uv I . The decay time and oscillation period of each ENM 107 

are 1 Re( )j  and 2 Im( )j , respectively. 108 

Many studies using relatively long SST and SSH records have found that the LDM, the ENM with 109 

the longest decay time [e.g., Penland and Matrosova, 2006], can provide a good estimate of the 110 

trend component [e.g., Newman, 2007, 2013; Solomon et al., 2011; Frankignoul et al., 2017; Shin 111 

and Newman, 2022]. However, Frankignoul et al. [2017] noted that the LDM can be sensitive to 112 

record length, such that in a relatively short record, the LDM decay time is not always well 113 

separated from those of other ENMs (Fig. S1). Consequently, the externally-forced signal could 114 
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project onto several ENMs, and conversely, the LDM could represent both the externally-forced 115 

signal and natural climate variability with a similar spatial structure.  116 

To address this, we aim to remove all contributions of natural climate variability upon the LDM 117 

time series. First, rewrite (2) as: 118 

1 1

2

( ) ( ) ( )
n

j j

j

t z t z tx u u ,       (3) 119 

where 1u  is the LDM and its expansion coefficient time series is 1( )z t . To estimate the contribution 120 

from all other modes to LDM, we regress the LDM onto all other ENMs and subtract the residual. 121 

This was done by defining an adjusted LDM adjoint vector, *

1v , as  122 

*

1 1v v V ,         (4) 123 

where V  is the adjoint submatrix containing all adjoint vectors other than the LDM, and 124 
T T

1

1( ) vV V V  is a vector of multiple linear regression coefficients. Then, the optimized forced 125 

signal becomes, 126 

* *T T

F 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )t z t t tx u v x u v x uV .    (5) 127 

This procedure is known as Gram-Schmidt orthonormalization [Gram, 1883; Schmidt, 1907; and 128 

also, e.g., Strang, 2016]. As a result, the adjusted adjoint vectors become orthogonal; thus, the 129 

ENM time series 
*( )jz t  are uncorrelated, while the ENM patterns remain nonorthogonal. We refer 130 

to the results of this approach [ *

1 ( )z t  and 1u ] as the “optimized LDM” (O-LDM). 131 

2.2 Multi-channel singular spectrum analysis 132 

We compare the O-LDM to multi-channel singular spectrum analysis (MSSA), formally 133 

equivalent to Extended EOF analysis [e.g., Weare and Nasstrom, 1982], where the data matrix 134 

contains values measured at different locations and different time lags. Thus, with the state vector 135 

x  (M locations x N times), the data matrix X , whose dimension is )( 1  () M l N l , is: 136 

(1) (2) ... ( )

(2) (3) ... ( 1)

... ... ... ...

( 1) ( 2) ... ( )

N l

N l

l l N

x x x

x x x

x x x

X ,     (6) 137 

where l  is the predefined lag equivalent to the width of a moving window passed through the time 138 

series. The eigenanalysis of TC XX  yields the orthogonal MSSA patterns and associated 139 
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uncorrelated time series. Then, the time series with the longest decorrelation time scale and its 140 

associated pattern represents the forced signal of the system. 141 

Again, MSSA results could also be sensitive to a short record by mixing some natural climate 142 

variability with an externally-forced trend so that the MSSA EOFs do not sufficiently separate 143 

between distinct oscillations [Groth and Ghil, 2011]. This issue may be addressed by rotating the 144 

MSSA EOFs via Varimax Rotation [Groth and Ghil, 2011] so that the forced signal pattern is no 145 

longer orthogonal to other climate variations. We refer to the resulting adjusted MSSA as O-146 

MSSA. 147 

 148 

3 Datasets and method details 149 

3.1 Datasets 150 

Both techniques are evaluated using gridded output from large ensembles (LENS) of historically 151 

forced coupled model simulations. We use SSTs covering the period 1959-2013 from two LENS 152 

datasets: the 30-member ensemble SPEAR-LE [Delworth et al., 2020] and the 40-member 153 

ensemble CESM1-LE [Kay et al., 2015]. These LENS simulations include forcings due to 154 

greenhouse gases, aerosols, etc. [Deser et al., 2020]. All gridded data were interpolated to a 155 

common 2°×2° in the longitudinal and latitudinal direction over the ice-free global ocean. 156 

The gridded observational datasets are monthly averaged sea surface temperatures (SSTs) from 157 

HadISST [Rayner et al., 2003] during 1901-2020 and sea surface heights from AVISO 158 

(https://doi.org/10.48670/moi-00148) during 1993-2020. Monthly sea level observations at 397 159 

tide gauge stations during 1993-2020 from the PSMSL (Permanent Service for Mean Sea Level) 160 

database [Woodworth and Player, 2003] are also used. 161 

3.2 LDM details 162 

For the SST-only analyses, we applied a three-month running-mean smoother to capture ocean 163 

memory effects. We retained the leading 18 EOFs of the SST anomalies, defined by removing the 164 

mean annual cycle, which explains about 77% of the total variance. The corresponding principal 165 

component (PC) time series then comprises the LIM state vector x . We used a 3-month training 166 

lag to determine the LIM and the LDM. 167 

For the analysis of sea level during 1993-2020, we first performed a combined EOF analysis of 168 

global SSH and tide gauge sea-level anomalies to reduce degrees of freedom. We retained the 169 

https://doi.org/10.48670/moi-00148


manuscript submitted to Geophysical Research Letters 

 

leading 14 SST and 12 {SSH, sea level} EOFs of monthly anomalies, explaining about 67% and 170 

50% of the total variance, respectively. Then x  consists of the corresponding PCs:  171 

 
SST

{SSH, sea level}
x .       (7) 172 

For this LIM, we did not apply a running mean to the monthly anomalies since SSH provides the 173 

necessary ocean memory effects [e.g., Newman et al., 2011], and likewise, we used a 1-month 174 

training lag. 175 

3.3 MSSA details 176 

For MSSA, we used the same EOFs and PCs used for the LIM. Optimal values for the lag l  are 177 

(ln )mN  with (1.5,3)m  [Khan and Poskitt,  2011]. A 100-year monthly data set l  can range from 178 

18.9 to 356.4 months, allowing analysis of quasi-oscillatory structures with periods in the range 179 

(0.2 l , l ) [Vautard et al., 1992]. Here, l  is set to 84 months, but our results are not sensitive to a 180 

choice of l  longer than 36 months and shorter than 240 months. 181 

 182 

4 Evaluation of Optimized LDM and MSSA  183 

4.1 SST trend detection in LENS output 184 

We start by applying the O-LDM and O-MSSA techniques to each SPEAR (CESM) LENS 185 

ensemble, yielding 30 (40) different estimates of the trend pattern and its time series. Recall that 186 

the success of either technique is measured by how well its application to a single ensemble 187 

member captures the ensemble-mean pattern and its time series, which should represent the 188 

externally-forced model response [Frankignoul et al., 2017]. 189 

For the SPEAR-LE (Fig. 1a), both the O-LDM (red) and O-MSSA (blue) time series generally 190 

capture the temporal evolution of the globally-averaged ensemble mean forced response (black), 191 

although the O-MSSA is notably smoother. However, this smoothness may be misleading since, 192 

in contrast to the O-LDM and the globally-averaged ensemble mean, the O-MSSA time series do 193 

not resolve the sudden cooling in the 1960s and 1990s, which are thought to be externally-forced 194 

responses to large volcanic eruption-induced stratospheric sulfate aerosol changes [e.g., Robock 195 

et al., 1999]. Still, for both techniques, the ensemble-mean forced response pattern (Fig. 1b) 196 

correlates very highly with the trend patterns determined separately for each ensemble member 197 

(Fig. 1c). 198 

The overall picture for the CESM1-LE is similar, with the O-LDM generally capturing the 199 

ensemble-mean forced response, while O-MSSA is similar but much smoother and misses the 200 

sudden cooling events (Fig. 1d). There is a lower signal-to-noise ratio (forced response compared 201 

to natural climate variability) in the CESM1-LE compared to the SPEAR-LE, principally due to 202 

much stronger ENSO variability in the CESM1 (e.g., Amaya et al., 2025). As a result, the O-203 

MSSA has many ensemble members for which the leading EOF and accompanying time series 204 
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represent ENSO. For these cases, we identify the externally-forced component with the slowest 205 

decorrelating time series (and EOF), which is in a higher order mode (Fig. 1f; open circles). 206 

 207 

 208 

Figure 1. a) The globally-averaged externally-forced signals in the 30-member SPEAR-LE derived from 209 

the O-LDM (red) and O-MSSA (blue) for the period 1959-2013. The mean and 1 standard deviation of 210 

the time series determined from each ensemble member are shown as red (blue) and orange (light blue), 211 

respectively, for the O-LDM (O-MSSA). The globally-averaged ensemble-mean SST anomalies are also 212 

shown as thick black lines. b) The pattern associated with the globally-averaged ensemble-mean SST 213 

anomaly time series. c) Pattern correlations (ranging between 0.8 and 1) between the ensemble-mean 214 

pattern in (b) and the eigenmode pattern associated with each ensemble member’s external forcing response 215 

for the O-LDM (red dots) and O-MSSA (blue dots; open circle when a higher order mode is chosen). (d-f) 216 

the same as (a-c) but for the 40-member CESM1-LE.  217 

 218 

We next test whether the O-LDM can generate consistent results with a record length similar to 219 

satellite datasets by determining the trend from each ensemble member using only the last 28 years 220 

(1986-2013) of the SPEAR-LE ensemble. Figure 2a shows the globally-averaged ensemble-mean 221 

forced response compared to the mean and ±1 standard deviation of 30 O-LDM estimates using 222 

each ensemble member, and Fig. 2b shows the associated ensemble-mean forced response pattern. 223 

The excellent comparisons between Fig. 2a and the 1986-2013 period in Fig. 1a, and between the 224 

associated ensemble-mean patterns in Figs. 1b and 2b, demonstrate how well the O-LDM captures 225 

the evolution of the forced response regardless of the length of the record. 226 

One key assumption made in the O-LDM technique (and many others, including O-MSSA) is that 227 

the trend pattern is fixed over the entire data record, or at least its change over time is negligible 228 

relative to the variations of its associated time series, as appears the case in Figs. 2ab. To 229 

investigate this assumption further, we estimated ensemble-mean forced responses of SPEAR-LE 230 

over different time intervals, starting with 1959-2013 and continuing with 1961-2013, 1963-2013, 231 
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and so on up to 2007-2013. For each period, the anomalies are defined relative to the same 1959-232 

2013 climatological annual cycle, ensuring that the trend is relative to a consistent benchmark. 233 

Figure 2c shows that the trend pattern determined for each year range is always highly correlated 234 

with the 1959-2013 ensemble-mean pattern (Fig. 1b). Also, the globally-averaged forced signals 235 

and accompanying patterns in all 25 cases converge to virtually the same forced response 236 

determined from longer records, both in amplitude and in stationarity of the global response time 237 

series (see inset in Fig. 2c). Together, these both suggest that the forced pattern could indeed be 238 

relatively unchanging. 239 

4.2 SST trend detection in observations 240 

We now apply the LDM and MSSA techniques to estimate the externally-forced signal in observed 241 

(HadISST) monthly SST anomalies over the ice-free ocean for long (1901-2020) and 242 

(comparatively) short (1961-2020) records. For the long record, the globally-averaged time series 243 

derived from the LDM (red) and MSSA (blue) techniques are all similar to the observed globally-244 

averaged SST anomaly time series (gray shading), as shown in Fig. 3a. Note that, again, the MSSA 245 

time series is much smoother than both the LDM and global-mean SST time series. However, for 246 

the short record (Fig. 3b), neither the LDM nor MSSA matches the global mean time series. 247 

Moreover, the LDM time series in Fig. 3b differs from the LDM time series over the 1961-2020 248 

period in Fig. 3a, demonstrating that the LDM does not provide a consistent estimate of the forced 249 

signal.  250 

  251 
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 252 

Figure 2. Comparison of SPEAR-LE ensemble means over different periods. a) Same as Fig. 1a but for the 253 

period 1986-2013. b) Same as Fig. 1b but for the period 1986-2013. c) The pattern correlation between the 254 

ensemble-mean forced response pattern derived from the SPEAR-LE for the period 1959-2013 (that is, Fig. 255 

1b) with the ensemble-mean forced response pattern derived over the periods 1959-2013, 1961-2013, 1963-256 

2013, and so on up to 2007-2013. The inset shows the corresponding time series determined separately for 257 

each period. In all cases, the anomalies are defined relative to the 1959-2013 climatological annual cycle.  258 

  259 
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 260 

 261 

Figure 3. Trend analysis for HadISST SST dataset. a-b) The globally-averaged externally-forced signals 262 

derived from the LDM (red) and MSSA (blue), compared with the observed globally-averaged SST time 263 

series (gray shading) for a) 1901-2020 and b) 1961-2020. c-d) Same as (a-b) but using the O-LDM (red) 264 

and O-MSSA (blue) for c) 1901-2020 and d) 1961-2020. e-f) The associated eigenmode pattern of the O-265 

LDM for e) 1901-2020 and f) 1961-2020. 266 

In contrast, the optimized techniques, O-LDM and O-MSSA, are more consistent within the 1961-267 

2020 period for both the long (Fig. 3c) and short (Fig. 3d) observational records and are also more 268 

consistent with the globally-averaged SST. The associated eigenmode patterns for the O-LDM 269 

(Figs. 3e and f), which are highly correlated (r=0.99) for both periods with the O-MSSA estimates, 270 

show warming over most of the oceans except for the eastern tropical Pacific and Northeast 271 

Atlantic regions, as noted in earlier studies (e.g., Compo and Sardeshmukh, 2010; Solomon and 272 

Newman, 2012). Note that both O-LDM time series have the same stair-step shape, with periods 273 

when the trend pattern slows its increase, roughly between 1940-1975 and 2003-2012. 274 

 275 

5 Observed Forced Sea Level Rise Signals 276 

Finally, we use the O-LDM to estimate the externally-forced sea level signal over the 1993-2020 277 

period. The globally-averaged time series associated with the O-LDM pattern is shown in Fig. 4a. 278 



manuscript submitted to Geophysical Research Letters 

 

The accompanying patterns of SST, SSH, and coastal sea level are in Fig. 4b, c, and d, respectively. 279 

By design, they share the same time series but with different amplitudes. Note that this time series 280 

is distinguishable from low-order polynomials such as linear and quadratic expressions. In 281 

particular, even over this relatively short period, the externally-forced signal has not constantly 282 

increased; instead, it slowed from about 2003 to 2012 and accelerated thereafter.  283 

The largest externally-forced signal of coastal sea level occurs for tide gauge stations along the 284 

North American east coast (Fig. 4d). Interestingly, high latitude stations show negative forced 285 

signals in contrast to positive responses in the nearby ocean (Fig. 4c). This is because tide gauge 286 

station observations are relative to the local reference, which is discerned from the mean sea level 287 

in the SSH dataset. Thus, the negative responses in high latitudes indicate strong positive vertical 288 

land motion (e.g., Fig. 10 of Hammond et al. [2021]). 289 

Next, we removed the estimated externally-forced signal from observations by determining the 290 

trend component from eqn. (5), that is, multiplying the Figs. 4b-d patterns by the Fig. 4a time 291 

series.  Figs. 4e-i compares the full and detrended time series for a few selected tide gauge stations 292 

along the U.S. West (San Francisco and San Diego), East (Charleston and Boston), and Gulf 293 

(Galveston) Coasts. For all five stations shown (as well as the remaining stations), removing the 294 

trend component yields a filtered time series with no apparent upward or downward trend. Notably, 295 

specific variations in Fig. 4a are evident for each station, including the early 2000s trend 296 

slowdown. 297 

Additionally, we compared EOFs (Fig. S2) and PCs (Fig. S3) from the original and detrended 298 

global SSH anomalies. While the leading original SSH EOF (Fig. S2a) is very similar to the LDM’s 299 

SSH component (Fig. 4c), its associated PC increases almost linearly, in contrast to the O-LDM 300 

time series (Fig. 4a). The difference arises because the second original SSH EOF does not represent 301 

purely internal variability:  Although this EOF is dominated by a mature ENSO pattern (Fig. S2b, 302 

in its El Niño phase), it also includes a contribution from the global trend pattern (Fig. S4), which 303 

is only removed by detrending with the O-LDM (Fig. S2e). In contrast, the next several original 304 

EOFs and associated PCs are nearly identical to their detrended counterparts (Figs. S2c/S3c with 305 

S2f/S3f and S2d/S3d with S2g/S3g). 306 

  307 



manuscript submitted to Geophysical Research Letters 

 

 308 

 309 

Figure 4. a) The globally-averaged externally-forced signals of SST (in oC) and SSH (in m) derived from 310 

the O-LDM for 1993-2020. Blue (red) dots indicate monthly global-mean SST (SSH) anomalies. b-d) The 311 

associated patterns for b) SST, c) sea level at the tide gauge stations, and d) SSH. e-i) The (left) unfiltered 312 

and (right) filtered sea level time series in m at the selected tide gauge locations, e) San Francisco, f) San 313 

Diego, g) Charleston, h) Boston, and i) Galveston. The externally-forced responses from the O-LDM are 314 

also shown as thick red lines in the left panels.  315 

  316 
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6 Conclusions 317 

This study introduced a new pattern-based empirical method to estimate externally-forced signals 318 

over relatively short observational periods. Gram-Schmidt orthonormalization is used to remove 319 

the projection of other ENMs, with similar structures and decay times, upon the LIM’s LDM so 320 

that the resulting optimized LDM represents the external forced signal. We find that the optimized 321 

LDM can successfully estimate forced signals within CESM1 and SPEAR LENS simulations from 322 

a single model ensemble member with only a few decades of data. Considering that the ENMs 323 

form a nonorthogonal set and that nonorthogonal EOF rotation is also necessary for MSSA to 324 

identify forced signals in a short record, we conclude that the forced signal pattern is not orthogonal 325 

to other climate variability. Note, however, that to the extent the forced pattern may not change 326 

with time (e.g., Fig. 2) and can be identified as a LIM eigenmode, it can still be considered 327 

independent of natural climate variations. 328 

While the global pattern of sea level change that we find is consistent with several previous studies, 329 

its associated time series is not since it does not vary smoothly and, therefore, is not well 330 

characterized by simple linear or quadratic fits. In particular, we do not find an obvious increase 331 

in the externally-forced signal of sea level change during the early 2000s global hiatus period. Note 332 

that our estimate captures changes in altimetric sea level and tide gauge sea level, which can differ 333 

due to vertical land motion that might also be calculable from our results.  334 

The O-LDM time series is also less smooth than many other trend-estimation techniques, such as 335 

the O-MSSA (Figs. 1 and 3). This could be an advantage of the O-LDM technique, at least in part: 336 

Recall that it was better able to capture sudden cooling events from single ensemble members in 337 

the LENS simulations (Fig. 1). Still, how much of the small high-frequency variability reflects fast 338 

variations in the forced response, as opposed to noise, remains to be determined. 339 
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Figure S1. Comparison of the frequency and damping time scales of linear feedback matrix L  

derived using the SST anomalies during the period a) 1901-2020 and b) 1961-2020.  
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Figure S2. a-d) The leading 4 EOFs of SSH anomalies derived from the aviso dataset for 1993-

2020. e-g) The leading 3 EOFs of SSH anomalies of which the externally-forced 

signals (see Fig. 4c) were filtered out using O-LDM. 
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Figure S3. a-d) The accompanying 4 normalized PCs of SSH anomalies derived from the aviso 

dataset for 1993-2020 [EOFs are shown in Fig. S2a-d]. e-g) The accompanying 3 

normalized PCs of SSH anomalies of which the externally-forced signals (see Fig. 4c) 

were filtered out using O-LDM [EOFs are shown in Fig. S2e-g]. 
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Figure S4. The difference between Fig. S2b and Fig. S2e. 

  


