Observing Mixed-Phase Cloud Microphysical-Dynamical Processes

Matthew Shupe CIRES - University of Colorado and NOAA/ESRL
C l RES Thorsten Mauritsen (Max Plank Institute), lan Brooks (Univ. of Leeds), and Ola Persson (Univ. of Colorado)

/ O bse rvat| on al /Analysis involves observations of single-layer, stratiform, mixed-phase clouds over the Arctic sea-ice by grounch\ SU mm arM
based millimeter cloud radar, dual-channel 23- and 31-GHz microwave radiometer, 60-GHz profiling
M ethOdS \ microwave radiometer, cetlometer, 449-MHz wind profiler, and radiosondes. / ¢ Multi-sensor measurements can reveal a wealth of

Information on cloud dynamical-microphysical interactions.
Cloud Boundaries —Cloud top identified using radar, cloud base identified using ceilometer.
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Phase Classification — Uses phase-specific signatures from radar, ceilometer, microwave radiometer, and radiosonde measurements (Shupe, GRL 2007). « Distinct S|gnatu_res In vertical VeIOCIty’ v_elomty skewne_ss,
Ice Microphysics (IWC and IWP) — Empirical radar reflectivity power law relationship and assumed particle size dist’n and mass-size relationship (Shupe et al., JAM 2005). turbulence, and Richardson number describe the dynamical
Liquid Microphysics (LWC and LWP) — Adiabatic liquid water profile using cloud boundaries and temperature profiles, scaled using a liquid water path derived from Interactions between cloud and surface.

microwave radiometer measurements. o o « Cloud top radiative cooling plays a key role in some
Vertical Velocity (W) — From cloud radar Doppler spectra, assuming liquid water droplets are tracers for air motions (Shupe et al., JTECH 2008). t it in the | | | stabilit
Skewness — Based on ¥2 hour of 4-sec. vertical velocity measurements. Positive skewness indicates stronger, narrower updrafts, and visa versa. fanS' 10NS '_n e_ OV_V' evel stalDllity. _ _
Turbulent Dissipation Rate (g) — From time-variance of radar mean Doppler velocity measurements (e.g., Shupe et al., JTECH 2008). % Observations indicate good correlation between vertical
Richard_?cf)n I§Iumb§_rI (IIQi) - Frolm 44_9-dl\_/IHz wind pllrofiler meslsureme?ts and radiosonde-constrained, 60-GHz radiometer temperature profiles. High values indicate stable velocity and condensed cloud water and ice in some cases, but a

stratification while lower values indicate neutral to unstable stratification. . :
Updraft potential (Up) — Derived from Ri analysis. Temperature perturbation (warming) needed at the surface for a parcel to rise to a given height. lack O_f correlation m_ others. Aerosol concentrations may
\Downdraft potential (Down) — Derived from Ri analysis. Number of higher layers that would descend to a given vertical location when cooled by 0.5 degrees. / contribute to these differences.

Importance of cloud top radiative coupling between
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cooling for buoyancy production. 17:00-21:00 COUPLED: surface and cloud.
* Turbulence in the lower layer is Cloud dynamically coupled with surface. See an evolution during this case of
driven primarily from surface, « Well mixed layer grows vertically from 1) Increased turbulent dissipation at the cloud level while the surface turbulence is
dissipation rate decreases with height. surface, meeting the cloud-mixed layer approximately constant in time,
» Turbulence in upper layer Is « Turbulent dissipation rate approximately 2) Potential temperature profiles showing a growth of the surface-based, well-mixed layer Multiple transitions occur, with similar signatures
maximum within the cloud layer constant from cloud layer down to surface. 3) Skewness within the cloud decreasing from strongly positive (surface-forced) to near zero to the other cases. In this case, the cloud top
Indicating radiative cooling. » LWP increase may be associated with the (both cloud radiative cooling and surface fluxes responsible for circulations). turbulence remains relatively constant while the 1. [T T SARASA
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