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[1] Cloud phase identification from active remote sensors in the temperature range from
0 to −40°C, where both liquid and ice hydrometeor phases are sustainable, is challenging.
Millimeter wavelength cloud radars (MMCR) are able to penetrate and detect multiple
cloud layers. However, in mixed‐phase conditions, ice crystals dominate the radar signal,
rendering the detection of liquid droplets from radar observables more difficult. The
technique proposed here overcomes this fundamental limitation by using morphological
features in MMCR Doppler spectra to detect supercooled liquid droplets in the radar
sampling volume in the presence of ice particles. High lidar backscatter and near‐zero lidar
depolarization measurements (good indicators of the presence of liquid droplets) from
the Mixed‐Phase Arctic Clouds Experiment (MPACE) conducted in Barrow, Alaska, are
used to train the technique and evaluate its potential for detecting mixed‐phase conditions.
Ceilometer, microwave radiometer, and radiosonde measurements provide additional
independent validation. Because of the ability of MMCRs to penetrate multiple liquid
layers, this radar‐based technique does not suffer from the extinction limitations of lidars
and is thus able to expand cloud phase identification methods to cloud regions beyond
where lidars can penetrate, providing output at the native radar resolution. The technique is
applicable to all profiling radars that have sufficient sensitivity to observe the small amount
of liquid in mixed‐phase clouds.

Citation: Luke, E. P., P. Kollias, and M. D. Shupe (2010), Detection of supercooled liquid in mixed‐phase clouds using radar
Doppler spectra, J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

1. Introduction

[2] The life cycles and radiative properties of clouds are
highly sensitive to the phase of their hydrometeors (i.e.,
liquid or ice). Current cloud parameterizations that parti-
tion water into liquid and ice based on temperature are
characterized by large uncertainties [Curry, 1986; Hobbs
and Rangno, 1985; Intrieri et al., 2002]. These uncertainties
are particularly important in high geographical latitudes and
temperature ranges where both liquid droplets and ice crys-
tals can coexist (mixed‐phase cloud). Furthermore, the pres-
ence of both ice and liquid affects the macroscopic properties
of clouds including their propensity to precipitate.
[3] Mixed‐phase clouds have a major presence in global

cloud cover [Hogan et al., 2004]. Cloud phase classifications
made at the Atmospheric Radiation Measurement (ARM)
North Slope of Alaska (NSA) observation site over the past
6 years and similar results from the yearlong Surface Heat
Budget of the Arctic (SHEBA) project have shown that

mixed‐phase clouds occur approximately 45% of the time in
the Arctic [Shupe et al., 2006] with maximum occurrence
during the spring and fall transition seasons. These Arctic
mixed‐phase clouds are typically stratiform in nature, occur
at the top of the inversion‐capped boundary layer, often con-
tain little liquid water, and are remarkably persistent (some-
times lasting for days to weeks). The liquid water found in
these mixed‐phase clouds, even in the cold polar winter, has
been shown to play the dominant role in cloud‐surface radi-
ative interactions [Shupe and Intrieri, 2004] and can have
profound impacts on the start and duration of the melt season,
on the total extent and thickness of sea ice, and indirectly on
the annual evolution of the surface albedo [e.g., Zhang et al.,
1996;Maykut and Untersteiner, 1971]. In the midlatitudes, in
addition to radiative implications, mixed‐phase clouds also
have great importance with respect to aircraft icing hazards
[Cober et al., 2001].
[4] Mixed‐phase clouds are understudied compared to

arguably simpler single‐phase clouds because of a number
of observational limitations. In situ measurements in mixed‐
phase clouds are hindered because of aircraft icing hazards,
difficulties distinguishing hydrometeor phase, and discre-
pancies in methods for deriving physical quantities [Wendisch
et al., 1996; Lawson et al., 2001]. At high latitudes, satellite‐
based retrievals of cloud phase are often hindered by the
highly reflective ice‐covered ground and persistent temper-
ature inversions. In spite of these hindrances, observational
studies of mixed‐phase clouds have been possible in some
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conditions using aircraft observation campaigns [Hobbs and
Rangno, 1998; Pinto, 1998; Lawson et al., 2001; Korolev
et al., 2003], routine satellite observations [Wang and Key,
2003], and multisensor observations from operational ground
stations [Hogan et al., 2003;Wang et al., 2004; Turner, 2005;
Shupe et al., 2006]. A comprehensive overview of remote
sensing–based retrieval techniques in mixed‐phase clouds is
provided in the work of Shupe et al. [2008].
[5] In this study, we use measurements from the

U.S. Department of Energy (DOE) Atmospheric Radiation
Measurement (ARM) program Mixed‐Phase Arctic Clouds
Experiment (MPACE) [Verlinde et al., 2007] conducted in
the fall of 2004 at the North Slope of Alaska (NSA) site [e.g.,
Stamnes et al., 1999; Ackerman and Stokes, 2003]. During
the experiment, collocated measurements from the Univer-
sity of Wisconsin High Spectral Resolution Lidar (HSRL)
[Eloranta, 2005] and the ARM program millimeter wave-
length cloud radar (MMCR) [Moran et al., 1998] were col-
lected. Prior to MPACE, the NSA MMCR receiver was
upgraded [Kollias et al., 2007] and continuous recording of
the MMCR Doppler spectra was available. The MMCR
Doppler spectrum reports the full distribution of the return
echo over a range of Doppler velocities, through which it is
capable of providing detailed information about cloud
microphysics and dynamics [e.g.,Kollias et al., 2002]. Before
the upgrade, only the first three moments of the Doppler
spectrum were recorded, namely the zeroth moment or radar
reflectivity, the first moment or mean Doppler velocity, and
the second moment or Doppler spectrum width. These three
moments of the Doppler spectrum are sufficient to describe
the spectrum shape if it does not deviate significantly from the
Gaussian distribution (moment approach). In mixed‐phase
conditions, the moments are dominated by the ice crystals’
characteristics and the detection of supercooled liquid is very
difficult, although spectrum width can provide useful infor-
mation [Shupe, 2007].
[6] Our objective is to demonstrate that we can overcome

the inability of the radar moment approach to detect the
presence of supercooled liquid in mixed‐phase conditions
through careful analysis of recorded Doppler spectra from
the vertically pointing radars of the ARM program (spectral
approach). Our technique looks beyond the traditional
moment approach in the analysis of cloud radar observa-
tions and attempts to retrieve microphysical properties from
the typically skewed, often multimodal, and sometimes very
complexmorphologies of cloud radar Doppler spectra [Kollias
et al., 2007a]. These distortions result from the interplay of
cloud dynamics, microphysics, and cloud phase. We decom-
pose the Doppler spectra into several bands of differing reso-
lution, each localized in Doppler velocity, using continuous
wavelet transforms and analyze the resulting patterns with a
neural network.
[7] Since we do not have direct measurements of the spatial

distribution of liquid in the atmospheric column, we use the
next best available proxy, collocated measurements of lidar
backscatter (b) and circular depolarization (CDR) to train and
validate our retrieval algorithm. Additional validation (but
not algorithm training) is provided by integrated liquid water
path measurements from a collocated microwave radiometer.
First, we demonstrate that the radar‐based retrieval technique
accurately predicts the presence of supercooled liquid in
mixed‐phase clouds using the radar Doppler spectra as the

only input. Second, we demonstrate that the technique is
capable of predicting with reasonable success the lidar signals
(b and CDR) from the Doppler spectra.

2. Background

[8] From the ground, the retrieval of mixed‐phase cloud
properties has been the subject of extensive research over
the past 20 years using polarization lidars [e.g., Sassen et al.,
1990], dual radar wavelengths [e.g., Gosset and Sauvageot,
1992; Sekelsky and McIntosh, 1996], combined active and
passive sensors [Wang et al., 2004; Turner, 2005; Shupe,
2007], and, recently, radar Doppler spectra [Shupe et al.,
2004, 2008]. Millimeter‐wavelength radars have substan-
tially improved our ability to observe nonprecipitating clouds
[Kollias et al., 2007b] because of their superior sensitivity to
nonprecipitating cloud layers and their ability to penetrate
several cloud layers.
[9] In clouds, lidar backscatter b (sr−1m−1) is proportional

to the square of the diameter (D) of the hydrometeors (~D2).
Depolarization of lidar backscatter (circular depolarization
ratio, CDR) indicates that the scattering particles are non-
spherical (when multiple scattering is negligible). In typical
mixed‐phase conditions, liquid occurs as a high concentration
of small spherical droplets while ice is distributed in relatively
lower concentrations of large, nonspherical ice crystals. As a
result, the lidar backscatter (~D2) signal is dominated by the
high‐concentration liquid droplets; areas with high‐intensity
lidar backscatter and near‐zero lidar depolarization signals
indicate the presence of small liquid droplets. On the contrary,
the radar backscatter is proportional to the sixth power of the
hydrometeor diameter (s ∼D6). Thus, in typical mixed‐phase
conditions, the low‐concentration large ice crystals dominate
the radar backscatter signal, which therefore offers little
information about the spatial distribution of liquid in the
atmospheric column. This is true if only theDoppler moments
are available (moments approach). In general, clouds com-
posed of only small liquid droplets do not have a reflectivity
higher than −17 dBZ [Frisch et al., 1995]. Thus, in subzero
temperatures, higher reflectivities suggest the presence of
larger particles such as ice crystals. When the conditions of
high radar reflectivity (dBZ > −17), high lidar backscatter
(b > 5·10−5 sr−1m−1), and near‐zero lidar circular depolar-
ization signal (CDR < 0.1) are observed simultaneously,
this implies the presence of mixed‐phase conditions. Such
synergistic cloud phase retrieval schemes that use collocated
radar and lidar profiles have been used in the past [e.g.,
Shupe, 2007]. However, synergistic radar/lidar techniques
are limited to the maximum height the lidar penetrates
before complete signal attenuation.
[10] In mixed‐phase conditions, at least two‐mode particle

size distributions (PSD)with different phase, terminal velocity,
and backscattering characteristics are present in the radar
sampling volume. The terminal velocity of cloud droplets
is negligible compared to typical vertical motions encoun-
tered in clouds, so that where ice crystals are not present the
observed mean Doppler velocity is a very good indication of
the vertical air motion [e.g., Kollias et al., 2001; Shupe et al.,
2004]. In contrast, ice particles have larger and broader fall
velocity distributions and account for most of the radar
backscattered energy. If sufficient separation between liquid
and ice fall velocity distributions exists, the spectra may
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exhibit a pronounced bimodality (Figure 1a) that can be
used to retrieve the vertical air motion and liquid and ice
microphysics (e.g., liquid water content, ice water content,
and ice effective radius) [Shupe et al., 2004]. For the MMCR,
negative Doppler velocity indicates motion away from the
radar (upward). If there is not sufficient separation between
liquid and ice fall velocity distributions, then often a skewed
single‐peaked Doppler spectrum is observed (Figure 1b).
Such asymmetry features in the Doppler spectrum are not
captured well using the traditional radar Doppler moments
approach and can be a source of information about the pres-
ence of mixed‐phase conditions.
[11] Cloud turbulence, however, can have an overwhelming

effect and smear (smooth) such asymmetries induced by
cloud microphysics. Recently, the ARM MMCRs deployed
a new optimum sampling strategy, along with continuous
recording of the Doppler spectra, which has been specifically

designed to minimize the effects of turbulence on the spectra
[Kollias et al., 2007a] through a shortened dwell time and a
smaller beam width and resolution volume. These new opti-
mum MMCR sampling settings were operational at the NSA
MMCR during the MPACE experiment. Our technique has
been developed and tested largely under stratiform condi-
tions. Performance would likely degrade in the turbulence of
strong convection.

3. Extraction of MMCR Doppler Spectra
Morphological Features

[12] Starting with the MMCR Doppler spectra, we remove
the noise, eliminate artifacts (e.g., aliasing, spectral images)
and identify the significant signal detections from hydro-
meteors [Kollias et al., 2007a]. Then, we apply a second‐
order Gaussian continuous wavelet transform (CWT) to the
spectra (Figures 2 and 3). The application of the CWT to a
Doppler spectrum decomposes the spectral power into a
two‐dimensional array providing feature localization in both
Doppler velocity and spectrum width (scale). This is accom-
plished by convolving the spectrum with a set of dilations a
and translations b of a “mother wavelet” y , according to

ya;b vð Þ ¼ y
v� b

a

where v is Doppler velocity [e.g., Addison, 2002; Rioul
and Vetterli, 1991]. We refer to the parameter a as the
scale of the wavelet. To demonstrate the ability of the CWT
to detect and localize the components of a sum of Gaussians,
we applied it to synthetically generated Doppler spectra
(Figure 2). Figure 2a contains a Gaussian synthetic Doppler
spectrum (i.e., unimodal particle size distribution). Figure 2b
contains a synthetic Doppler spectrum generated from a pair
of identical Gaussian distributions (i.e., bimodal particle dis-
tribution of equal radar reflectivity) resulting in a nonskewed
spectrum. Figure 2c contains a Gaussian pair of unequal
magnitude (i.e., liquid and ice particle size distributions),
resulting in a skewed spectrum resembling many real spectra.
The radar moment approach results in very similar Doppler
moments for all three spectra, and thus, the subtle differences
in the shapes of the three synthetic spectra may not be cap-
tured. The operation of the CWT at a scale appropriate to
detect the fundamental Gaussian features on the synthetic
spectra is shown in Figures 2d–2f. The coefficients are dif-
ferent in all three cases, indicating the ability to detect the
subtle differences in the shapes of the synthetic Doppler
spectra. The wavelet scale appropriate to detect the different
particle modes is not known in advance. Thus, we apply the
second‐order Gaussian mother wavelet to each recorded
MMCR Doppler spectrum at several different scales and use
the output as input to a neural network to detect the presence
of supercooled liquid in mixed‐phase clouds.
[13] Figure 3 shows the complete set of parameters gen-

erated by the CWT for a typical mixed‐phase Doppler spec-
trum. The observed Doppler spectrum (Figure 3b) presents
evidence of skewness toward the low fall velocity edge of
the spectrum due to the presence of liquid and ice particles
in the radar sampling volume. The CWT is applied to the
observed Doppler spectrum at six different scales (Figure 3a)
and the resulting coefficients (Figure 3c) form most of the

Figure 1. Examples of MMCR Doppler spectra generated
from (a) two different phase mode particle size distributions
with enough size separation to create a bimodal Doppler spec-
trum and (b) two different phase particle size distributions
that do not have sufficient velocity difference to generate a
clear bimodal Doppler spectrum separated by noise bins.
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input to the neural network. The radar reflectivity, mean
Doppler velocity, and spectrum width of the Doppler spec-
trum significant peak, calculated independently of the CWT,
complete the list of input parameters to the neural network.
Parameters such as the radar range (altitude) and temperature
are not inputs to the algorithm. The neural network learns the
functional relationship between this full set of radar spec-
trum‐based input parameters and the HSRL backscatter and
depolarization measurements taken at the same time during
MPACE.
[14] We now briefly describe the operation and training of

the neural network. A neural network consists of a collection
of interconnected processing elements, which in practice are
organized in a manner tailored to the type of problem to be
solved. Although sometimes implemented directly in spe-
cialized hardware, the processing elements are commonly,
as in our application, a software abstraction running on a
general purpose computer. Our retrieval technique uses the
feedforward connection model, organizing processing ele-
ments into a structure known as a multilayer perceptron.
Information flows in parallel through this structure along a
clearly defined forward path from a set of continuous‐valued
inputs, through several stages of processing elements, to a
set of continuous‐valued outputs. Each processing element
composing the network has itself a set of continuous‐valued
inputs i1…n, a single continuous‐valued output o, a set of
internal adjustable weights w1…n, and an internal adjustable
bias b. The weights and bias are the sole means of con-
trolling the behavior of processing elements and, in turn, the
behavior of the entire neural network.
[15] Each processing element computes an internal acti-

vation when a pattern is applied to its inputs,

a ¼ i � wþ b ;

and passes this value through a function, typically mono-
tonically increasing and differentiable, to its output. In our
case, this is the logistic sigmoid function,

o ¼ f að Þ ¼ 1

1þ e�a
:

Thus, the activation and output depend upon the amount of
alignment between the input vector and the internal weights.
When many such processing elements having different
patterns of activation are interconnected, complex nonlinear
behavior can be produced, with the overall computational
task distributed across many processing elements.
[16] It is known that neural networks of this form can

approximate arbitrary multidimensional continuous mappings
[e.g., Funahashi, 1989]. In order to accomplish this, a neural
network must have a sufficient number of processing ele-
ments and interconnections, and it must be trained on a par-
ticular mapping through a process such as the backpropagation
of errors algorithm [Rumelhart et al., 1986]. In our case,
backpropagation establishes the ability to map radar Doppler
spectrum features to HSRL backscatter and depolarization
parameters. A representative set of paired input/output training
data defines the mapping.
[17] During the training process, input vectors from the

representative training data set (in our case, radar spectrum
features) are applied sequentially to the neural network. As
each is applied, the resulting output vector of the neural net-
work is compared with the corresponding HSRL measure-
ment from the representative training data set. The difference
between the actual neural network output and the HSRL
measurement (i.e., error) is then used to make a slight adjust-
ment to the internal weights of all processing elements in a
gradient descent process. As the training data are successively
cycled through, the reduction in error is monitored, and when

Figure 2. Synthetic MMCR Doppler spectra generated by (a) a single Gaussian distribution, (b) the
superposition of two equal magnitude Gaussian distributions, (c) the superposition of two unequal mag-
nitude Gaussian distributions, and (d–f) their corresponding continuous wavelet transforms.
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no more overall improvement is observed, the training pro-
cess ceases. In practice, the monitoring of error reduction is
usually performed on a second independent data set reserved
for this purpose, known as the validation data. These data are
never used to adjust weights and thus test the ability of the
neural network to generalize beyond the training set. If
training has been successful, the neural network, when pre-
sented with a novel input vector not previously encountered,
will correctlymap it to a corresponding output vector. In other
words, it makes predictions of HSRL backscatter and depo-
larization values for new Doppler radar spectra not belonging
to the representative training set.
[18] Figure 4 shows a scatterplot of the actual measured

lidar CDR versus the measured lidar backscatter for most of
the MPACE field study. We used a small fraction of these
HSRL measurements to train the neural network. The boxed

area in Figure 4 encloses lidar detections of supercooled
liquid (clear separation from solid particle detections). To
generate a radar‐based supercooled liquid binary mask from
new Doppler spectra, the trained neural network outputs
predicted values of lidar CDR and backscatter associated with
each spectrum, and a determination is made whether these
predicted values fall within this same boxed area. Those that
do constitute a liquid detection in the mask.
[19] The training data set was selected from the first 7 days

of October 2004. The MMCR measurements have a vertical
resolution of 45 m and temporal resolution of 5 s. Every
7 h of observations, 1 h of MMCR measurements and their
corresponding nearest lidar measurements in time and height
are selected (Figure 5). We decided to select training data
every seventh hour (the choice of seven is arbitrary) so that
the majority of time is not sampled, allowing abundant

Figure 3. (a) The wavelet at each scale used, (b) example of an observed mixed‐phase Doppler spec-
trum, and (c) the corresponding wavelet transform of the Doppler spectrum at each scale.
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intervals for testing the predictor’s ability to generalize. The
selected measurements are divided into two equal‐sized
groups. One group serves exclusively as the training data
source, and the other is for validation. During each training
cycle, the neural network output is evaluated over the vali-
dation data set. Iterations of the network for which an overall
improvement occurs are saved. When there is no further
improvement after 20,000 cycles, the process terminates.

4. Results

[20] To validate the performance of our classifier, we first
show in detail several retrieved time‐height liquid water masks
that have good agreement with the independently measured
ceilometer cloud base. Next, we show that good agreement
between the base of the retrieved liquid mask and the ceil-
ometer cloud base holds for the full month of October
2004. Finally, we demonstrate excellent long‐term correla-
tion between time series of our retrieved liquid mask’s col-
umn thickness and the integrated liquid water path measured
independently by a collocated microwave radiometer. We
contrast this with a poor correlation between the total column
thickness of significant radar detections and the same time
series of MicrowaveRadiometer (MWR) liquidwater path. In
addition, we demonstrate from soundings that the measured
thermodynamic conditions coinciding in time‐height with
our liquid mask are consistent with mixed‐phase conditions.

4.1. Time‐Height Liquid Mask Comparisons

[21] The neural network output (prediction of supercooled
liquid location via prediction of lidar backscatter and lidar
circular depolarization ratio) derived using MMCR Doppler
spectra is evaluated with data collected during the ARM
MPACE campaign. The first examined case is a deep cloud
layer observed on 7 October 2004. Figure 6 shows the time‐
height mapping of the MMCR Doppler moments for a

1 h period (1000–1100 UTC). This hour is not included in
the training data set. The observed MMCR reflectivities
range from ‐15 to + 15 dBZ with distinct streaks of high
radar reflectivity originating around 2 km altitude accompa-
nied by increased Doppler velocities. In contrast, the highest
Doppler spectrum width values are observed in the layer
between 2 and 2.5 km. Temperature measurements from
balloon soundings indicate a near‐surface temperature of
−5°C and −20°C near the cloud top. Thus, if liquid is present
in the radar echoes, it will be supercooled. It is apparent that
from the radar moments it is difficult to infer the cloud phase,
although the high radar reflectivity values suggest the pres-
ence of ice almost everywhere. The large spectrum width
values around 2–2.5 km partially indicate the presence of a
particle population with a broad range of velocities and hint
at the coexistence of liquid and ice particles; however, this
is not a firm criterion for the detection of supercooled liquid
since localized turbulence can also affect the spectrum width.
[22] A different view of the same cloud is provided by the

lidar (Figure 7). The band of low circular depolarization ratio
(CDR) values near the top of the lidar returns is a strong
indication of the presence of spherical particles in the sampled
volume. The lidar backscatter measurements for the same
period also support this conclusion (Figure 7b). A band of
high backscatter cross section is present between 1.5 and
2 km, indicating the presence of liquid water that fully
attenuates the lidar signal. Four representative spectra from
the collocated MMCR are also shown in Figure 7c, corre-
sponding to the indicated times and altitudes of occurrence of
Figure 7b. It is apparent that all four spectra are similar and
inseparable on the basis of Doppler moments alone. How-
ever, the three spectra coinciding with the band of high lidar
backscatter have a subtle skewness or bimodality at their
principle peaks’ left edge, consistent with the presence of
liquid, whereas the remaining one (S2) does not.
[23] Using the collocated MMCR Doppler spectra collected

during the same period as input to our trained neural network,
we predicted the lidar backscatter and CDR and, from these,
the region containing supercooled liquid (Figure 8). While
our ultimate objective is to retrieve the location of super-
cooled liquid (Figure 8c), we also display the predicted lidar
backscatter and depolarization. The predicted lidar measure-
ments are directly comparable with the actual lidar observa-
tions. The cloud ceiling measured independently (not used as

Figure 4. Measured lidar backscatter cross section versus
circular depolarization ratio for most of October 2004 with
the region corresponding to liquid detection outlined by a
gray box.

Figure 5. Illustration of the selection scheme for choosing
training data. Training data are sparsely sampled from1 h time
windows every 7 h. The population of training samples is
distributed evenly over height. Thus, every range gate
(g1, g2, g3, …, gn) contributes roughly the same number
of samples.
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input to the retrieval) by a collocated ceilometer is over-
plotted in black. There is excellent morphological consis-
tency between the predicted (Figures 7a and 7b) and observed
(Figures 8a and 8b) lidar backscatter and CDR. The lidar
measurements in Figure 7 do not extend beyond the layer of
high backscatter because of extinction of the lidar beam in
optically thick cloud; however, more cloud is present up to
about 4 km (Figure 6). The predicted area of supercooled
liquid (Figure 8c) suggests the presence of a liquid cloud base
around 1.8 km, and inspection shows the reflectivity at this
altitude to be in the range of 0 dB. Small liquid droplets alone
cannot support such high reflectivity values (e.g., on the order
of 106 cloud droplets/cm3 would be required to produce a

0 dBZ radar reflectivity return). Furthermore, the MMCR‐
based detection of supercooled liquid suggests the presence of
pockets of liquid near the cloud top (around 4 km height).
Lidar measurements are not available to provide verification
for the presence of the liquid layer near the cloud top due to
complete lidar signal extinction at the first liquid layer.
However, the nearest available balloon sounding to the
selected period (taken at 11 UTC) indicates the presence of a
thin layer with high relative humidity (above 90%) near the
cloud top (Figure 9a). Figure 9b shows the temperature profile
from the same sounding.
[24] Another 1 h period that demonstrates the potential to

detect cloud liquid and predict lidar observables using

Figure 6. Time‐height mapping of MMCR (a) radar reflectivity with radiosonde temperature profile,
(b) mean Doppler velocity, and (c) Doppler spectrum width for a 1 h period (1000–1100 UTC) on 7 October
2004.
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MMCR Doppler spectra is shown in Figures 10 and 11. This
case is from a multiliquid layer period with precipitating ice
(Figure 10). The observed lidar CDR and backscatter mea-
surements (Figures 10a and 10b) suggest the presence of two
liquid layers, but with the upper layer substantially occluded
by extinction in the lower layer when compared with the
MMCR reflectivity view of the same period (Figure 10c). The
predicted lidar backscatter, CDR, and area of supercooled
liquid within the range of the radar’s operational sensitivity
are shown in Figure 11. Once again, there is remarkable
consistency between the observed and predicted lidar back-
scatter, CDR, and location of the supercooled liquid. The
independently measured ceilometer cloud base is also shown
in Figure 11. Once again, the sharp liquid base predicted from
the neural network coincides very well with the ceilometer

cloud base and the high backscatter values measured by the
lidar. Figure 11 fills out the picture of two liquid layers and
even suggests a third layer of mixed‐phase conditions
(Figure 11c) at 1.2 km, which is also briefly hinted in the
actual measurements of Figure 10a at 6.475 UTC.

4.2. Comparisons With Liquid Water Path
and Cloud Base Detections

[25] Additional validation of the supercooled liquid detec-
tion algorithm is provided through a comparison of our
retrieved lowest supercooled liquid layer base and the ceil-
ometer cloud base (Figure 12a) over the entire month of
October 2004. Both time series are smoothed by a box‐car
window filter of 4 h duration. The result shows good agree-
ment over this longer time frame, even though training data

Figure 7. Time‐height mapping of (a) the observed lidar circular depolarization ratio (CDR) for 1 h period
(1000–1100 UTC) on 7 October, (b) the observed lidar backscatter for the same period, and (c) examples of
four MMCR Doppler spectra collected during the same period corresponding to the indicated time‐height
locations in Figure 7b.
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was only taken from the first week. That our retrieval tech-
nique detects not only the presence of supercooled liquid in
the column but also accurately locates the base of the first
liquid layer is indicative of its sensitivity to detecting small
amounts of liquid, since the smallest amounts of liquid are
expected at the cloud base level. For comparison, Figure 12b
shows the base of significant radar hydrometeor detections
(often the lowest height of the precipitating ice) over the same
time period in black and the ceilometer cloud base in gray.
These comparisons clearly demonstrate the method’s ability
to identify liquid water layers embedded in ice.
[26] The ARM suite of instruments operating at NSA

during MPACE included a zenith pointing microwave radi-
ometer providing zenith measurements of integrated liquid
water path. The gray curve of Figure 12c shows the recorded

liquid water path measured by this instrument over the month
of October 2004. The overlaid black curve shows the col-
umn thickness of our radar‐retrieved liquid mask for the
same time period. Liquid mask column thickness and Liquid
Water Path (LWP) are both smoothed by a box‐car window
filter of 4 h duration. The correlation between these two time
series is 0.68. This correlation is expected to be somewhat
less than unity because of the natural variability of liquid as a
function of height (i.e., differences in liquid water content).
For comparison, we generated a time series of the total col-
umn thickness of all significant hydrometeor radar detections
(liquid and ice) and found its correlation with the MWR
liquid water path over the same time period to be only
0.079. We can infer then that the liquid‐containing subset of
radar returns has been substantially identified within the full

Figure 8. Time‐height mapping of (a) the predicted lidar CDR using the corresponding MMCR Doppler
spectra for the period 1000–1100 UTC on 7 October 2004, (b) the predicted lidar backscatter for the same
period with the ceilometer cloud base (black dots) plotted for reference, and (c) the predicted area of
supercooled liquid detections.
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set of radar returns over the monthlong period. The MWR
did not play any role in the training of our algorithm and
thus provides an entirely independent source of validation.
[27] Forty percent of our October 2004 radar‐retrieved

liquid water mask coincides with radar returns having a
reflectivity of at least −15 dBZ (Figure 13a). It is interesting to
note that when we limit our mask to this higher reflectivity
subset, its column thickness correlation with MWR liquid
water path actually increases to 0.75. For the column thick-
ness of all hydrometeor radar detections of at least −15 dBZ,
the correlation with the MWR liquid water path is 0.2. Once
again, we can infer the ability of the technique to locate
the liquid containing returns within the higher reflectivity
(>−15 dBZ) subset.
[28] Figures 13b and 13c show temperature and relative

humidity distributions of sounding measurements for all
time‐height pixels identified to contain liquid water that are
within 1 h of a radiosonde launch during October 2004. The
Doppler spectra‐based detections of supercooled liquid are
found to be within the −30°C–0°C range. This finding agrees
with prevailing theories for the existence of supercooled
liquid at temperature ranges of −40°C–0°C. Although not a
surprise, another interesting finding is that the bulk of our
supercooled liquid detections occur in areas with relative
humidity higher than 90%.

5. Summary

[29] The life cycles and radiative properties of clouds are
highly sensitive to the phase of their hydrometeors (i.e.,
liquid or ice). Cloud radars are among the premier instru-
ments used in atmospheric research for the detection of the
vertical structure of clouds. Conditional analysis of cloud
radar Doppler moments can provide limited information for
predicting cloud phase; however, the information is incon-
clusive in a large fraction of mixed‐phase conditions. This
limitation comes from dependency of the radar backscatter
on the sixth power of the hydrometeor diameter resulting in
radar return signals being dominated by the presence of large

ice crystals and the masking of the supercooled liquid droplet
returns.
[30] Synergistic profiling measurements from cloud radars

and lidars have been proposed for the identification of cloud
phase based on differences in their scattering mechanisms
[e.g., Shupe, 2007]. High lidar backscatter and near‐zero
lidar depolarization measurements have been previously
found to correlate very well with the presence of liquid layers
in clouds. However, such measurements are not widely
available and the detection of supercooled liquid is possible
only in areas where a lidar signal is available (subject to
liquid attenuation).
[31] The proposed technique overcomes this fundamental

limitation of cloud radars and suggests new venues for the
retrieval of the location of supercooled liquid using verti-
cally pointing cloud radars. The proposed technique hinges
on the idea that careful sampling of clouds by vertically
profiling cloud radars [Kollias et al., 2007a] can reduce the
detrimental effects of dynamics on the Doppler spectrum
morphology. The ARM MMCRs are an example of cloud
radars where such sampling is implemented and the recorded
Doppler spectra contain microphysical signatures. In this
study, we used a wavelet operator on the recorded Doppler
spectra in order to identify subtle differences in the Doppler
spectrum morphologies that can lead to the detection of the
presence of more than one water phase in the radar resolution
volume.
[32] Using the MMCR Doppler spectra, we detected the

area of supercooled liquid in both single and multilayer
cloud scenes. The retrieved area of the supercooled liquid
nicely agrees with the prediction of supercooled liquid from
the lidar measurements. A monthlong time series of pre-
dicted liquid column thickness shows high correlation with
integrated liquid water path independently measured by a
collocated microwave radiometer. The ability of the MMCR
to penetrate multilayer clouds enables the prediction of lidar
observables in areas where lidar measurements are not
available because of signal extinction. This extends the ability
of ground‐based systems to retrieve cloud phase in areas with

Figure 9. Soundings of (a) relative humidity and (b) temperature at 11 UTC on 7 October 2004.
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no lidar measurements and without the use of assumptions
related to cloud morphology and spatial distribution of cloud
phase.
[33] It is not our intent to suggest that the MMCR could

replace the lidar observations. The suggested technique
provides only information about the presence of supercooled
liquid in clouds, while lidar measurements help to extract
quantitative microphysical information about the cloud dro-
plets and aerosols that are not possible with a cloud radar.

Radar sensitivity is another factor that limits the application
of the technique. During the ARM MPACE experiment,
some physically thin and low liquid water layers were
undetected by the NSA MMCR. Thus, our radar‐based
technique is applicable only to areas where the liquid radar
return is above the detection threshold of the cloud radar.
Plans include the application of the technique to all the
ARM sites using appropriate training data sets (e.g., micro-
pulse and Raman lidar measurements).

Figure 10. Time‐height mapping of (a) the observed lidar circular depolarization ratio (CDR) for
1 h period (0600–0700UTC) on 7October, (b) the observed lidar backscatter for the same period, and (c) the
observed MMCR radar reflectivity of the same period, with radiosonde temperature profile. This is a
multilayer cloud arctic case.
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Figure 11. Time‐height mapping of (a) the predicted lidar CDR using the corresponding MMCRDoppler
spectra for the period 0600–0700 UTC on 7 October 2004, (b) the predicted lidar backscatter for the same
period with the ceilometer cloud base (black dots) plotted for reference, and (c) the predicted area of super-
cooled liquid detections.
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Figure 12. Time series of (a) ceilometer measured cloud base (gray) and the base of radar retrieved liquid
(black), (b) ceilometer measured cloud base (gray) and the base of significant radar detections (black), and
(c)MWRmeasured liquid water path (gray) and column thickness of the radar retrieved liquid mask (black),
in km, for October 2004. MWR LWP has a 0.68 correlation with retrieved liquid thickness.

Figure 13. (a) Reflectivity, (b) temperature, and (c) relative humidity distributions of the October 2004
radar retrieved liquid mask pixels occuring within 1 h of a radiosonde launch.
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[34] The application of wavelets or other operators to the
recorded Doppler spectra can lead to new ways of analyzing
radar Doppler spectra. Already, the ARM program is produc-
ing higher moments of the Doppler spectra (such as skewness
and kurtosis) and identifying the presence of spectral multi-
modalities. In many cases, these parameters all exhibit good
coherence in time and space and open new venues for process
studies in clouds and precipitation using radars.
[35] Additional validation of the proposed retrieval tech-

nique and detailed assessment of related uncertainties should
be the focus of future work. These can be achieved in the
context of future field campaigns with comprehensive instru-
mentation and at a variety of locations.
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