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Abstract. Using a 1/12° regional model of the Northwest
Atlantic Ocean (MOM6-NWA12), we downscale an ensem-
ble of retrospective seasonal forecasts from a 1° global fore-
cast model. To evaluate whether downscaling improved the
forecast skill for surface temperature and salinity and bot-
tom temperature, the global and downscaled forecasts are
compared with each other and with a reference forecast of
persistence using anomaly correlation. Both sets of forecasts
are also evaluated on the basis of mean bias and ensemble
spread. We find that downscaling significantly improved the
forecast skill for monthly sea surface temperature anomalies
in the Northeast US Large Marine Ecosystem, a region that
global models have historically struggled to skillfully pre-
dict. The downscaled sea surface temperature (SST) predic-
tions for this region were also more skillful than the per-
sistence baseline across most initialization months and lead
times. Although some of the SST prediction skill in this re-
gion stems from the recent rapid warming trend, prediction
skill above persistence is generally maintained after remov-
ing the contribution of the trend, and patterns of skill sug-
gestive of predictable processes are also preserved. While
downscaling mainly improved the SST anomaly prediction
skill in the Northeast US region, it improved bottom tempera-
ture and sea surface salinity anomaly skill across many of the
marine ecosystems along the North American east coast. Al-
though improvements in anomaly prediction via downscal-
ing were ubiquitous, the effects of downscaling on prediction
bias were mixed. Downscaling generally reduced the mean
surface salinity biases found in the global model, particu-
larly in regions with sharp salinity gradients (the Northern

Gulf of Mexico and the Northeast US). In some cases, how-
ever, downscaling amplified the surface and bottom temper-
ature biases found in the global predictions. We discuss sev-
eral processes that are better resolved in the regional model
and contribute to the improved skill, including the autumn
reemergence of temperature anomalies and advection of wa-
ter masses by coastal currents. Overall, the results show that
a downscaled high-resolution model can produce improved
seasonal forecast skill by representing fine-scale processes
that drive predictability.

1 Introduction

The development of seasonal climate forecasting systems,
which provide information about predicted climate con-
ditions on timescales ranging from months to years, has
sparked new applications to anticipate the response of ma-
rine ecosystems to predictable climate variability and pro-
vide information to inform the management of living ma-
rine resources (Jacox et al., 2020; Payne et al., 2017; Tom-
masi et al., 2017). Forecasts of sea surface temperatures from
these seasonal forecast systems, which are based on global
climate models with coupled atmosphere and ocean com-
ponents, are skillful across many Large Marine Ecosystems
(LMEs) (Hervieux et al., 2017; Stock et al., 2015). In many
regions, global models are also capable of predicting the oc-
currence and intensity of marine heat waves (Jacox et al.,
2022) and chlorophyll anomalies at the ocean surface (Park
et al., 2019). A variety of processes contribute to predictabil-
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ity in different regions, including the progression of coastal
waves and the reemergence of prior anomalies (Jacox et al.,
2020).

The skill of seasonal predictions for LMEs along the North
American east coast (NAEC), including the Northeast US
and Scotian Shelf LMEs, is typically much lower than many
other regions in global forecast models (e.g., Stock et al.,
2015). McAdam et al. (2022) suggested that the lack of skill
may be due to coarse model resolution resulting in poor ini-
tialization or inability to maintain sharp fronts in the NAEC
and other western boundary current regions. For the NAEC
in particular, it is well known that models with resolution
coarser than 1/10° are unable to accurately simulate the Gulf
Stream and its separation from the continental shelf, typically
resulting in severe temperature biases north and west of the
current along the shelf and coast (Chassignet and Garaffo,
2001; Chassignet and Xu, 2017; Saba et al., 2016). Further-
more, compared to many other regions like the North Amer-
ican west coast, predictability for the east coast is hindered
by its weaker teleconnections to the El Niño–Southern Os-
cillation (ENSO) and other predictable climate modes at sea-
sonal timescales. The seasonal variability of ocean temper-
ature anomalies in the North Atlantic basin is strongly con-
nected to the North Atlantic Oscillation (NAO), but this mode
is only moderately predictable at seasonal timescales (with
dynamical model skill generally requiring large ensembles;
Smith et al., 2020), and the contribution of NAO to ocean
temperature predictability involves features and processes
that are often poorly simulated in coarse-resolution mod-
els, including the modulation of the Gulf Stream (Sanchez-
Franks et al., 2016; Shin and Newman, 2021) and the reemer-
gence of anomalies from the previous winter sequestered be-
low the mixed layer (Sukhonos and Alexander, 2023).

To the southwest, along the coast of the Gulf of Mexico,
the predictability of ocean conditions is potentially enhanced
by variability connected to ENSO (e.g., Alexander and Scott,
2002; Gomez et al., 2019). Idealized experiments have also
shown the potential for 1–3 months of predictability of the
Loop Current in the Gulf of Mexico (Dukhovskoy et al.,
2023; Haley et al., 2023). High-resolution downscaled fore-
casts are likely necessary to realize this potential predictabil-
ity; horizontal resolution of at least 10–25 km is necessary to
simulate Loop Current eddies, for example (Oey et al., 2013).

Seasonal forecast models based on empirical relationships
with observed temperature have shown some temperature
prediction skill for the NAEC. Shin and Newman (2021) de-
veloped a linear inverse model to predict sea surface temper-
ature (SST) and found that the model was significantly more
skillful than a multi-model mean of global dynamical fore-
cast models at predicting SST anomalies in the Northeast US
and Scotian Shelf LMEs, particularly at longer lead times.
Chen et al. (2021) found that bottom temperatures in NA
coastal regions could be skillfully predicted by combining
persistence of recent conditions with empirically determined
advection from nearby regions. However, both of these mod-

els are univariate (they predict only surface or bottom tem-
perature); are constrained by the availability and accuracy of
historical observations; and may become unreliable if ocean
currents, mixed layer depths, and other properties that influ-
ence the seasonal variability in ocean temperatures change in
the future.

Dynamical downscaling of global model predictions with
a high-resolution regional model could provide accurate sea-
sonal predictions while avoiding many of the drawbacks of
statistical/empirical predictions. In a pioneering application,
Siedlecki et al. (2016) developed skillful dynamically down-
scaled forecasts of ocean temperature, oxygen, and acidifi-
cation for the Northern California Current System. For the
NAEC, dynamical downscaling has been used to produce
short-term forecasts for the next few days (Wilkin et al.,
2018) and long-term projections of the effects of climate
change (Alexander et al., 2020; Han et al., 2019; Rutherford
et al., 2024) but not to produce seasonal forecasts.

Dynamical downscaling does not guarantee increased
forecast skill, however. Dynamically downscaled simulations
often resemble the solution of the coarse model they are
downscaling, which brings into question how much value
they add (e.g., Ghantous et al., 2020). Although dynam-
ical downscaling offers the possibility of running multi-
ple ensemble members to provide information about fore-
cast uncertainty, the substantial computational cost of high-
resolution models used for downscaling has constrained the
ensemble sizes of past climate downscaling efforts (Drenkard
et al., 2021). In an analysis of seasonal forecasts for the Cal-
ifornia Current System, Brodie et al. (2023) found that al-
though a small ensemble of downscaled forecasts outper-
formed a subset of the same size from a much larger en-
semble of coarse-resolution forecasts, the full ensemble of
coarse-resolution forecasts outperformed the small down-
scaled ensemble. Furthermore, in some cases, high ocean
resolution has been found to actually degrade forecast skill
(Sandery and Sakov, 2017; Thoppil et al., 2021).

In this study, we test the hypothesis that a high-resolution
dynamical ocean model will improve the skill of seasonal
forecasts for the NAEC relative to a lower-resolution global
model. To do this, we dynamically downscale 29 years of
retrospective forecast simulations produced by the Seam-
less System for Prediction and EArth System Research
(SPEAR) model of the Geophysical Fluid Dynamics Labo-
ratory (GFDL), which uses a coupled ocean component with
1° resolution. We downscale the SPEAR seasonal forecasts
with a 1/12° model of the Northwest Atlantic Ocean built
with the regional modeling capabilities of the MOM6 ocean
model (MOM6-NWA12), which has recently been assessed
for accuracy when simulating ocean temperatures, position
and variability of the Gulf Stream, and other relevant ocean
features along the NAEC in a reanalysis-forced historical
simulation (Ross et al., 2023a). To the best of our knowledge,
this is the first attempt to dynamically downscale seasonal
ocean forecasts for the Northwest Atlantic Ocean.
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In the sections that follow, we describe the methods used
to downscale the SPEAR forecasts and evaluate the retro-
spective prediction skill (Sect. 2). The presentation of the
model results (Sect. 3) focuses on seasonal prediction skill
for surface and bottom temperature and surface salinity in the
downscaled simulations relative to the global simulations. In
the discussion (Sect. 4), we examine drivers of predictabil-
ity and skill and discuss potential future improvements to the
forecasting system. We conclude by noting the promising po-
tential for these seasonal forecasts to improve the manage-
ment of living marine resources along the NAEC.

2 Methods

2.1 Numerical models

The high-resolution regional model used in this study is a
1/12° MOM6-based model of the Northwest Atlantic Ocean
(MOM6-NWA12; Ross et al., 2023a). Briefly, MOM6-
NWA12 is a regional ocean–sea ice model with explicit tides
that spans a wide domain, including the Caribbean Sea, Gulf
of Mexico, and North American east coast (Fig. 1). The
model configuration that we use here is essentially the same
as the one evaluated by comparing a reanalysis-forced histor-
ical simulation of the model with observations in Ross et al.
(2023a), including the same grid, vertical coordinates, pa-
rameterization choices, and parameter values. The only dif-
ference is that the version used here does not include cou-
pled biogeochemistry. The model is forced at the surface by
atmospheric data and by river discharge from land and at the
ocean open boundaries. The wide extent of the model grid,
which is a subset of the even broader North and Equatorial
Atlantic grid of Chassignet and Xu (2017), was designed
to reduce the influence of the model being downscaled on
the coastal and shelf environments and the western bound-
ary current system by placing the ocean open boundaries far
from these regions of interest. In the reanalysis-forced simu-
lation spanning 1993 to 2019, Ross et al. (2023a) found that
the model was capable of accurately reproducing mean con-
ditions of temperature, salinity, mixed layer depth, and other
physical properties. The model also simulated many aspects
of historical variability, although some of the recent extreme
warming trends in the region were underestimated.

The high-resolution regional model was used to downscale
lower-resolution global retrospective forecasts produced by
GFDL’s SPEAR model (Delworth et al., 2020). As described
in Lu et al. (2020), the SPEAR retrospective forecasts were
run using a coupled atmosphere–land and ocean–sea ice
model with a nominal 0.5° resolution for the atmosphere
and 1° resolution for the ocean (the SPEAR_MED config-
uration). The suite of retrospective forecasts from SPEAR
starts in 1991 and extends to the present, with recent and
ongoing forecasts contributed to the North American Multi-
Model Ensemble (NMME). Each SPEAR retrospective sea-

Figure 1. Map of the NWA12 ocean model domain (light gray
shading) and the six marine ecosystems for which spatial averages
were computed in the results: the Scotian Shelf (SS), Northeast
US (NEUS), and Southeast US (SEUS) Large Marine Ecosystems
(LMEs) and the Floridian and Northern and Southern Gulf of Mex-
ico (NGOMEX and SGOMEX) ecoregions. Black outlines within
the NEUS LME show two ecological production units: the Mid-
Atlantic Bight (MAB) and the Gulf of Maine (GOM).

sonal forecast was run for 1 year. Earlier forecasts contained
15 ensemble members, while more recent runs contributed
to the NMME contain 30. Ocean initial conditions for the
SPEAR retrospective forecasts were obtained by assimilat-
ing the Optimum Interpolation Sea Surface Temperature v2
(OISSTv2) sea surface temperature product, vertical profiles
from Argo floats, and several other sources using an ensem-
ble adjustment Kalman filter; see Lu et al. (2020) for details.

2.2 Downscaled retrospective forecast simulations

MOM6-NWA12 was initialized and used to run downscaled
retrospective forecast simulations four times per year (begin-
ning on the first day of the month at the start of each meteo-
rological season – March, June, September, and December)
for every year from 1993 through 2021. Initial conditions for
the forecasts were derived from an analysis simulation of the
regional MOM6-NWA12 model forced by the same atmo-
sphere (ERA5; Hersbach et al., 2020), ocean (GLORYS12;
Lellouche et al., 2021), and river (GloFAS; Alfieri et al.,
2020) reanalyses as in Ross et al. (2023a). Additional details
on the variables and boundary conditions used are provided
in Ross et al. (2023a). One difference is that in the analysis
simulation, temperature and salinity throughout the model
domain were nudged (i.e., restored using Newtonian relax-
ation) towards monthly means from the GLORYS12 reanaly-
sis with a 90 d damping timescale. Although the free-running
simulation in Ross et al. (2023a) successfully recreated many
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aspects of observed ocean variability and change, the addi-
tion of nudging helps maximize the accuracy of the initial
conditions, while the moderate nudging timescale is intended
to keep the simulation from being nudged too far away from
the model’s attractor and inducing a drift during the fore-
cast when the nudging is removed. Instantaneous conditions
saved at the beginning of each month of the historical simula-
tion were used as initial conditions for the retrospective fore-
cast experiments. For each initialization date, 10 ensemble
members were integrated forward for 1 year. Each member
used atmospheric forcing from a different SPEAR forecast
member (discussed next) but began with the same initial con-
ditions from the analysis simulation. Using the same initial
conditions for each ensemble member will reduce the ensem-
ble spread; however, as we show in the results (Sect. 3), the
ensemble members quickly diverge after initialization and
the effect of the identical initial conditions is minimal. We ac-
knowledge, though, that deriving the initial conditions from
a data assimilation process or a more sophisticated nudging
method could improve the forecast spread and skill.

The downscaled forecasts were forced at the ocean surface
with daily mean atmospheric data from the global SPEAR
retrospective forecasts. Each of the 10 downscaled ensem-
ble members was forced with the corresponding ensemble
member from the SPEAR reforecasts. The forcing was de-
rived directly from the SPEAR data; no correction for bias
or drift was applied before downscaling. Preliminary experi-
ments suggested that attempting to correct biases in the forc-
ing yielded negligible changes in the downscaled forecast
skill. The global SPEAR forecast simulations use a scheme
that applies adjustments to the ocean tendencies based on
typical analysis increments, and this reduces drift in the
global model bias during the course of the forecast (Lu et al.,
2020). A standard correction for bias and drift was applied
to the downscaled forecasts after running the simulations
(Sect. 2.3).

The regional MOM6-NWA12 model also requires ocean
open boundary conditions, river discharge, and tidal forcing.
Tidal forcing at the open boundaries and by the tidal poten-
tial, both of which can be accurately predicted far into the fu-
ture with basic astronomy, were applied for the forecasts as in
Ross et al. (2023a). For river discharge, which is substantially
more challenging to forecast, we neglected any potential pre-
dictability and instead used a smoothed daily climatology of
river discharge in the forecasts. The climatological mean for
each day of the year was determined for each grid point in the
1993–2019 river forcing used in Ross et al. (2023a), which
was derived from the GloFAS reanalysis (Harrigan et al.,
2020). The climatologies were then smoothed with a ±5 d
triangular filter following Pegion et al. (2019) and Ross and
Stock (2022).

The non-tidal open boundary conditions were also spec-
ified with monthly climatologies averaged over 1993–2019
from the daily GLORYS12 reanalysis temperature, salinity,
velocity, and sea level data used in the analysis simulation.

Climatology was used for the boundary data under the as-
sumption that propagation of any predictable temperature or
salinity signals from the model boundaries to the coastal and
shelf regions of interest would occur over timescales longer
than the 1-year length of the forecasts. For example, the prop-
agation of anomalies from where the continental shelf inter-
sects the northern model boundary to the Scotian Shelf and
Gulf of Maine has been found to occur on timescales of 1–
2 years (Brickman et al., 2018; Gonçalves Neto et al., 2021;
Jackson et al., 2016; New et al., 2021). Preliminary experi-
ments confirmed that the forcing used at the open boundaries
made a negligible difference to the forecast skill as long as
the forcing did not disrupt the Gulf Stream pathway. In addi-
tion to avoiding issues related to the Gulf Stream, using cli-
matological boundary data also greatly simplifies the setup of
the forecast simulations. Attempts to extend the forecasts be-
yond 1 year of prediction, however, would very likely require
using the parent model forecasts as boundary conditions or
devising some other way to allow predictable signals to enter
through the boundary. The same is true for developing the
forecasts to predict faster propagating sea level variations.

2.3 Forecast post-processing

From monthly mean time series of both the downscaled
NWA12 and parent SPEAR model output, we calculated
area-weighted averages of surface and bottom temperature
and surface salinity within the six marine ecoregions shown
in Fig. 1: three Large Marine Ecosystems (LMEs) along
the US east coast (Scotian Shelf, Northeast US Continental
Shelf, and Southeast US Continental Shelf) and three areas
for the North and South Gulf of Mexico and the West Florida
Shelf derived from corresponding marine ecoregions of the
world (Spalding et al., 2007). For a few analyses, we also
calculated averages within two smaller ecological produc-
tion units (EPUs) for the Gulf of Maine and Mid-Atlantic
Bight. To ensure that model area averages were consistent
with conditions on the shelf, the regions used for averag-
ing were further reduced to include only model points with
depths 200 m or shallower in the three shallow Marine Ecore-
gions and 600 m or shallower in the remaining LMEs and
EPUs.

A climatology for each initialization month (March, June,
September, and December), lead month (0–11 months), vari-
able, and region or grid cell was calculated using the en-
semble mean of the full 1993–2021 set of forecasts. Forecast
anomalies were calculated by subtracting the respective cli-
matology from the forecasts. When compared with observed
anomalies, the forecast anomalies effectively have the lead-
dependent bias removed. Although this approach is com-
monly used, calculating the model climatology with the full
set of forecasts will introduce some artificial skill by incor-
porating information about the future that would have been
unknown in the past (Risbey et al., 2021); however, we em-

Ocean Sci., 20, 1631–1656, 2024 https://doi.org/10.5194/os-20-1631-2024



A. C. Ross et al.: Downscaled forecasting 1635

phasize that this information is only used for the correction
of bias and drift.

2.4 Forecast evaluation

To evaluate the forecasts, we primarily relied on data from
the GLORYS12 ocean reanalysis to represent the observed
conditions. This high-resolution reanalysis compares favor-
ably with in situ observations relative to other reanaly-
sis products (Amaya et al., 2023; Carolina Castillo-Trujillo
et al., 2023) and has the advantage over purely observed
datasets of providing complete coverage over time and space.
We note, however, that the initial conditions for the down-
scaled forecasts were derived by nudging towards the GLO-
RYS reanalysis, which may confer a skill advantage on
the downscaled forecasts. In this paper, we often refer to
the GLORYS reanalysis as “observations” because it has
been extensively evaluated regionally and to indicate where
methodologically another observational or state estimate
dataset could be used. As with the forecasts, monthly cli-
matologies were calculated for each variable in the GLO-
RYS dataset during the 1993–2021 time period and were sub-
tracted from the data to produce anomalies, and spatial aver-
ages were calculated within the different marine ecoregions
in Fig. 1.

The downscaled retrospective forecasts produced by
MOM6-NWA12 and the corresponding parent forecasts pro-
duced by SPEAR were compared with the reanalysis dataset
using the Pearson correlation coefficient and the mean bias
(the mean difference between the model and the observa-
tions). To determine how the forecast skill varied with the
time of year when the forecast was initialized and the lead
time, we calculated these metrics separately for each initial-
ization month and lead time.

To quantitatively test the hypothesis that downscaling pro-
duces an increase in forecast skill, we compared the corre-
lation coefficients from MOM6-NWA12 and SPEAR using
the method of Steiger (1980). This method tests the differ-
ence between two correlation coefficients obtained from two
sets of forecasts that are compared against a common set of
observations and are correlated with each other. Neglecting
this commonality between the two forecasts would result in
overly conservative estimates of significance (Siegert et al.,
2017). We used this to conduct a two-sided test with a null
hypothesis that the difference between the correlation coeffi-
cients for NWA12 and SPEAR was 0. For a fair comparison
between the two models, all evaluations of the SPEAR fore-
casts were based on only the first 10 ensemble members that
were downscaled with MOM6-NWA12.

To determine if the model forecasts outperform a simple
forecast, we also used the Steiger (1980) test to compare
the observation–model correlations with the correlations be-
tween the observations and a set of persistence reference
forecasts. The persistence forecasts were computed by tak-
ing the reanalysis monthly mean anomaly from the month

before each forecast was initialized and assuming that this
anomaly would remain constant throughout the forecast.

For a second comparison between the skill of the parent
and downscaled model forecasts, we used the DelSole and
Tippett (2016) random walk test to assess the difference in
the absolute error in the two models (the absolute value of the
difference between the model forecast and the observation).
This test uses a time series of historical forecasts from two
models. Starting at 0 at the beginning of the time series (year
1993 here), it adds 1 each time the first model (NWA12) has a
lower absolute error than the second (SPEAR) and subtracts
1 each time the second model has a lower absolute error than
the first. This produces a time series of the cumulative sign of
the errors, and a consistent trend in the time series indicates
consistent better performance by one model. Changes in rel-
ative performance can be indicated by changes in the trend
of the time series. Under the null hypothesis that the model
mean absolute errors are equal, the time series follows a ran-
dom walk with a probability distribution given by DelSole
and Tippett (2016). For this test, unlike the other compar-
isons, we pooled the forecasts over all initialization times.
To simplify the presentation of the results, the forecasts from
both models were resampled to seasonal (3-month) averages,
and the test was run for the resulting four seasonal lead times.

Finally, to assess whether the ensemble members from
both models provide reliable probability information (i.e.,
whether the typical ensemble spread is consistent with the
typical error in the ensemble mean), the average spread of
the ensemble members was compared with the root mean
square error (RMSE) of the ensemble mean forecast. If the
ensemble is well calibrated, these two metrics will be equal,
while underdispersion and overconfidence will be indicated
by a larger RMSE and overdispersion and underconfidence
by a larger spread (Fortin et al., 2014). The RMSE of the
ensemble mean was calculated using the anomalies, which
removes the error due to mean bias. The ensemble spread
was calculated as the square root of the average ensemble
variance using Eq. (16) of Fortin et al. (2014):

S =

√√√√ 1
T

T∑
t=1

s2
t . (1)

Here, s2
t is the unbiased estimate of the variance of the en-

semble:

s2
t =

1
E− 1

E∑
e=1

(
Xt −Xt,e

)2
, (2)

T is the number of forecast times, E is the number of ensem-
ble members, and X is the ensemble of forecasts.

3 Results

Sea surface temperature prediction skill for both the global
SPEAR and downscaled NWA12 models outperforms a
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baseline forecast of persistence across many initialization
months, lead times, and LMEs (Fig. 2). The highest corre-
lations are generally found in the Northeast US LME, where
both NWA12 (Fig. 2d) and SPEAR (Fig. 2e) exhibit a diag-
onal pattern of high skill corresponding to forecasts of au-
tumn and winter SST anomalies. This pattern is consistent
with the reemergence of early spring temperature anomalies
from below the summer mixed layer in the autumn and win-
ter (Sect. 4.1). NWA12 substantially improves on the SST
prediction skill of the SPEAR model in the Northeast US
LME (Fig. 2f). This improvement is the highest for fore-
casts initialized in September and at later lead times in June
and December, where the SPEAR forecasts have correlations
that are sometimes negative and worse than persistence. A
possible cause of this error is discussed in Sect. 4.1.2–4.1.3.
Both models also have high forecast correlations in the Sco-
tian Shelf LME (Fig. 2a–c), although with a less clear pat-
tern to the skill and few statistically significant improvements
in the downscaled model. In the remaining four southern
LMEs (Fig. 2g–r), the correlation coefficients are compar-
atively lower than those in the SS and NEUS, and the dif-
ference between the two models is negligible. Most forecasts
have a higher correlation than persistence, however.

Forecast correlation coefficients are higher for bot-
tom temperature (Fig. 3), which partially reflects its in-
creased persistence. Most downscaled forecast correlations
are higher than the persistence correlation, however, though
the majority are not significantly higher. In the Northeast
US (Fig. 3d–f), the pattern of forecast skill and downscal-
ing improvement is similar to that seen for surface temper-
ature. In other regions, NWA12 bottom temperature predic-
tions have significantly higher skill than SPEAR for some
cases where they did not for surface temperature. This is per-
haps not unexpected as the downscaled NWA12 bottom tem-
perature forecasts were initialized with data from the same
GLORYS12 reanalysis used as validation, and the lower cor-
related SPEAR bottom temperature values partially reflect
the persistence of differences between the SPEAR initial-
ization and the GLORYS12 reanalysis. With this caution in
mind, skill and improvement on the Scotian Shelf (Fig. 3a–c)
resembles the Northeast US sea surface temperature pattern
of skill for forecasts verifying in autumn and winter. This
pattern only appears in the downscaled predictions; in the
global model predictions, some of the anomaly correlations
are significantly lower than persistence. In the Southeast US
(Fig. 3g–i), the downscaled model has skill greater than per-
sistence and SPEAR across a wide range of times, except
for forecasts verifying in December, which may reflect poor
prediction of the mixing of surface water to the bottom. A
similar pattern of limited improvement in forecasts of winter
bottom temperature in the downscaled model is seen in the
Northern Gulf of Mexico (Fig. 3m–o). However, the three
LMEs along the shores of the Gulf of Mexico (Fig. 3j–r) have
improved downscaled forecast skill for forecasts verifying in
the late summer and early autumn.

The patterns of correlation seen in surface and bottom tem-
perature also generally appear in the correlation skill for sea
surface salinity (Fig. 4). For example, the NEUS (Fig. 4d–
f), Floridian (Fig. 4j–l), and NGOMEX (Fig. 4m–o) regions
have a general pattern of higher correlation for forecasts ver-
ifying in the autumn and winter. Similarly, the SEUS LME
(Fig. 4g–i) has lower skill for predictions of winter, which is
consistent with lower skill of winter bottom temperature and
the possible connection to unpredicted mixing. In most re-
gions, the improvements of the downscaled NWA12 over the
global SPEAR are higher for surface salinity than for temper-
ature. Because the downscaled forecast river discharge is set
to climatology and precipitation and evaporation are poorly
predicted and/or negligible drivers of salinity, the forecast
skill here must primarily come from better resolution of
salinity anomalies in the initial conditions and better predic-
tion of their advection and dispersion (Sect. 4.1.2) or better
prediction of salinity advection by anomalous currents.

Over all times and regions, NWA12 generally has cooler
SSTs than than SPEAR, which is apparent in how NWA12
worsens the cool biases in SPEAR (indicated by shades of
purple in the right column of Fig. 5) and improves the warm
biases (green colors). For the SS and NEUS LMEs, the bias
has generally worsened in NWA12 relative to SPEAR de-
spite the improved anomaly correlation, although the bias has
improved in NWA12 for forecasts verifying in autumn and
early winter when the downscaled forecasts have the most
skill (Fig. 2). In these two regions (Fig. 5a, d), NWA12 has a
pronounced cold bias that develops in spring and dissipates
in summer. This bias as well as the warm autumn bias appear
to be inherited from the global model, although the global
biases are generally shifted 1–3 months earlier. It should be
noted that SPEAR includes an ocean tendency adjustment
(Lu et al., 2020) which helps keep biases in check during
the course of the forecasts. The benefit of this adjustment is
also evident from the lack of bias drift over lead times in
both models; in other words, forecast biases depend mostly
on verification date and not on lead time. Finally, whereas
SST correlation in the southern three LMEs was similar in
NWA12 and SPEAR, NWA12 typically has lower SST bias
in these regions.

Bottom temperature biases also show a strong dependence
on verification month, except in the Southeast US region
(Fig. 6). NWA12 generally has a cool bias in the two north-
ern LMEs and a warm bias elsewhere. The cool bias devel-
ops as the forecast simulations reach winter and persists for
the remainder of the forecast (note that June initializations in
Fig. 6a, d have near-zero bias for summer and autumn, but
in December, initializations the following summer and au-
tumn are biased cool). In the southern three LMEs (Fig. 6j,
m, p), NWA12 has a warm bias in forecasts of summer and
autumn, but this bias does not persist into the winter. NWA12
has substantially lower bottom temperature bias than SPEAR
in the Southeast US LME (Fig. 6g–i), which has a narrow
shelf and is dominated by the western boundary current. In
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Figure 2. Comparison between sea surface temperature forecast–observation correlation coefficients for NWA12 (left column) and SPEAR
(middle column) and the difference between the two (right column). In the left two columns, an open black square indicates a correlation
that is greater than the persistence–observation correlation, a filled black square indicates that this difference is statistically significant, and
a black x indicates a correlation that is significantly lower than the persistence–observation correlation. In the right column, a filled black
square indicates that the anomaly correlation of NWA12 is significantly different than the anomaly correlation of SPEAR.

other regions, the differences between the global and down-
scaled prediction biases are more mixed.

Some of the largest and most consistent improvements
from downscaling are found in the reduced sea surface salin-
ity biases (Fig. 7). The reduced bias is most notable in the
NEUS (Fig. 7d–f) and NGOMEX (Fig. 7m–o) LMEs, both
regions of high river discharge and sharp coastal salinity gra-
dients, where SPEAR underestimates the mean surface salin-
ity. Across all regions, the downscaled model generally has a
mild salty bias in contrast to SPEAR’s fresh biases. It should
be noted that the GLORYS12 reanalysis used as the observa-

tions in this comparison does not simulate salinity as well as
it does temperature (Amaya et al., 2023; Carolina Castillo-
Trujillo et al., 2023) and that some of the reduction in bias
may be due to the use of this reanalysis in the derivation of
the initial conditions for the downscaled forecasts.

Aggregated across all four initialization months and aver-
aged into 3-month seasons, the random walk metric shows
that NWA12 SST anomalies have a statistically significant
lower mean error than SPEAR (positive random walk value)
for all lead seasons in the Northeast US (Fig. 8b) and all but
the last season in the Floridian region (Fig. 8d). Overall, the
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Figure 3. Comparison between bottom temperature forecast–observation correlation coefficients for NWA12 (left column) and SPEAR
(middle column) and the difference between the two (right column). In the left two columns, an open black square indicates a correlation
that is greater than the persistence–observation correlation, a filled black square indicates that this difference is statistically significant, and
a black x indicates a correlation that is significantly lower than the persistence–observation correlation. In the right column, a filled black
square indicates that the anomaly correlation of NWA12 is significantly different than the anomaly correlation of SPEAR.

mean absolute error (MAE) of predicted SST anomalies in
the Northeast US is approximately 20 % lower in the down-
scaled NWA12 model than in the global model. NWA12 also
has significantly lower error for the first season after initial-
ization in the Southeast US (Fig. 8c) and marginally statisti-
cally significant improvements for the Southern Gulf of Mex-
ico in the first and third seasons (Fig. 8f) although, in these
cases, the magnitude of the improvement in the overall MAE
is small. None of the tests conclude that the error in NWA12
is significantly worse (i.e., no final value of the test lies below
the 90 % confidence interval for a random walk with 0 mean)

although the final lead season nearly ends as significantly
worse in the Southern Gulf of Mexico and was occasionally
significantly worse in the NGOMEX. For the Northeast US
and, to a lesser extent, the Scotian Shelf LMEs, the results
suggest a possibility that the downscaled forecasts were no
longer better than the global model forecasts after around
2016 (indicated by roughly flat lines); however, the sample
size is too small for this result to be conclusive.

Despite the use of initial conditions that were identical
for each of the 10 ensemble members, the downscaled SST
forecasts have similar or better ensemble spread character-
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Figure 4. Comparison between sea surface salinity forecast–observation correlation coefficients for NWA12 (left column) and SPEAR
(middle column) and the difference between the two (right column). In the left two columns, an open black square indicates a correlation
that is greater than the persistence–observation correlation, a filled black square indicates that this difference is statistically significant, and
a black x indicates a correlation that is significantly lower than the persistence–observation correlation. In the right column, a filled black
square indicates that the anomaly correlation of NWA12 is significantly different than the anomaly correlation of SPEAR.

istics than the global model (Fig. 9). In all regions, both
models have similar ensemble spread in the first forecast
month, which indicates that the ensemble of atmospheric
conditions provided by SPEAR is able to rapidly force the
downscaled ensemble members to diverge from their iden-
tical initial conditions. Across most lead times in the two
northern LMEs (Fig. 9a–b), NWA12 has both higher en-
semble spread and lower RMSE than the SPEAR forecasts,
although the RMSE generally remains greater than the en-
semble spread (i.e., NWA12 remains overconfident but less
so). Differences between the two models are smaller in the

remaining four regions, aside from NWA12 having higher
spread than SPEAR in the Southeast US and lower spread
and RMSE than SPEAR in the Floridian region. Both mod-
els are also overconfident (RMSE greater than spread) in the
Southeast US and Northern Gulf of Mexico regions. In the
Southern Gulf of Mexico LME, only the first forecast month
is substantially overconfident. However, the RMSE of both
models rapidly converges to the RMSE of the climatology,
which indicates no forecast skill.

https://doi.org/10.5194/os-20-1631-2024 Ocean Sci., 20, 1631–1656, 2024



1640 A. C. Ross et al.: Downscaled forecasting

Figure 5. Comparison between sea surface temperature forecast–observation mean bias for NWA12 (left column) and SPEAR (middle
column) and the difference between the magnitude of the mean bias in NWA12 and SPEAR (right column). Green shades in the right column
indicate that NWA12 mean SST is closer to the observed mean than SPEAR, while purple shades indicate that the SPEAR mean is closer
than NWA12.

4 Discussion

In this section, we examine three mechanisms that con-
tribute to the prediction skill and how better resolution of
these mechanisms improves the skill in the downscaled fore-
casts: the reemergence of SST anomalies, advection of salin-
ity anomalies, and temperature and salinity anomalies driven
by variability of the Gulf Stream (Sect. 4.1). This examina-
tion primarily focuses on the Northeast US region, where
downscaling produced consistent improvements in surface
and bottom temperature and surface salinity. After analyzing
the mechanisms that contribute to prediction skill, we deter-

mine whether the skill would be reduced if we accounted for
the effect of the predictable trend in SST (Sect. 4.2). Finally,
we discuss whether there is an opportunity to increase the
forecast skill by increasing the number of members in the
model ensemble (Sect. 4.3).

4.1 Sources of model skill and improvement from
downscaling

4.1.1 Reemergence of temperature anomalies

The reemergence mechanism, whereby temperature anoma-
lies are deeply mixed during the winter, then insulated from

Ocean Sci., 20, 1631–1656, 2024 https://doi.org/10.5194/os-20-1631-2024



A. C. Ross et al.: Downscaled forecasting 1641

Figure 6. Comparison between bottom temperature forecast–observation mean bias for NWA12 (left column) and SPEAR (middle column)
and the difference between the magnitude of the mean bias in NWA12 and SPEAR (right column). Green shades in the right column indicate
that NWA12 mean bottom temperature is closer to the observed mean than SPEAR, while purple shades indicate that the SPEAR mean is
closer than NWA12.

the atmosphere beneath the shallow summer mixed layer, and
finally mixed back to the surface in the autumn and early win-
ter as the mixed layer deepens again (e.g., Alexander et al.,
1999), is one prominent source of long-term seasonal pre-
dictability in many regions (Jacox et al., 2020). In the results
(Fig. 2), we found that SST forecasts for the Northeast and
Southeast US LMEs were most skillful for predictions of au-
tumn and winter SST anomalies even for forecasts initialized
in March or the previous December, which is consistent with
predictable reemergence of SST anomalies.

To quantitatively evaluate the observed and predicted
reemergence of SST anomalies, we first calculated the cor-

relation between detrended SST anomalies in December and
March and anomalies in subsequent months for the North-
east and Southeast US LMEs and two smaller ecological
production units (EPUs) within the NEUS LME (Fig. 10).
These region-average anomalies were calculated only for ar-
eas deeper than 60 m to avoid including nearshore regions
that are too shallow to develop deep anomalies that reemerge.
We also calculated the index of reemergence developed by
Geiss et al. (2020), which is the difference between the ac-
tual lagged correlation and the lagged correlation expected
from a best-fit first-order autoregressive process. Reemer-
gence is indicated by a lagged correlation that is higher than
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Figure 7. Comparison between sea surface salinity forecast–observation mean bias for NWA12 (left column) and SPEAR (middle column)
and the difference between the magnitude of the mean bias in NWA12 and SPEAR (right column). Green shades in the right column indicate
that NWA12 mean surface salinity is closer to the observed mean than SPEAR, while purple shades indicate that the SPEAR mean is closer
than NWA12.

expected; in Fig. 10, we plot black triangles when the differ-
ence is greater than 0.1. This index is similar to the approach
developed by Byju et al. (2018), who developed an index us-
ing the difference between lagged correlations with winter
temperature in the following 6 and 12 months, except that it
can identify reemergence in any month. Here we fit the au-
toregressive process to data from 1–5 months after the start
month by minimizing the RMSE of the autoregression over
data from these months. For the forecasts, the 10 ensemble
members were pooled together rather than using the ensem-
ble mean.

In the GLORYS reanalysis, reemergence is evident in the
Northeast US LME as a significant increase in correlation in
October or November after a minimum in summer (Fig. 10a–
b). Over the two EPUs within the Northeast US, the reemer-
gence is strongest in the Gulf of Maine (GOM; Fig. 10c–d).
In the Southeast US LME (Fig. 10g–h), March SSTs have a
similar reemergence signature, with a weaker magnitude but
a longer persistence into winter.

In the global SPEAR model, winter SST anomalies in the
Northeast US tend to persist for too long throughout the
summer, especially in the Mid-Atlantic Bight (MAB). March
SST anomalies in the Southeast US also persist for too long
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Figure 8. Cumulative sign of the difference between the absolute errors in SST forecasts from NWA12 and SPEAR. Forecasts have been
aggregated into 3-month seasonal averages. The gray-shaded region indicates where the difference in absolute error between the two models
is not statistically significant at α = 0.1. Annotations in the top left of each panel give the overall mean absolute error (MAE) of the model
forecasts for each lead time.

in the global model, whereas December anomalies are eroded
too rapidly in the summer. However, in the majority of cases,
the global model forecasts still maintain a signal of reemer-
gence (black triangles in Fig. 10) although, in some cases,
the SPEAR model reemergence is delayed compared to the
GLORYS reanalysis.

Compared to the global SPEAR forecasts, the downscaled
NWA12 forecasts generally have lagged SST correlations in
Fig. 10 that are closer to the GLORYS reanalysis and are
not overly persistent. Although downscaling improves the
lagged correlation, it does not completely eliminate all bi-
ases in reemergence; NWA12 is similar to SPEAR in terms
of months when significant reemergence is detected and the
magnitude of the reemergence signal. For example, com-
pared to the reanalysis, both models have a much stronger
reemergence of December SST anomalies in the MAB.

The presence of reemergence in the forecasts is consis-
tent with the reemergence of SST forecast skill in Fig. 2,
particularly for the downscaled predictions. In the Northeast
US, the skill of forecasts initialized in both March and De-
cember peaks in the subsequent November, which matches
the timing of the forecast reemergence of SST anomalies
in Fig. 10. In the Southeast US, March-initialized forecast
skill has a minor reemergence in October, which matches

the weak reemergence of SST in the observations and fore-
casts. December-initialized skill, however, has a large peak in
September, which does not match any modeled or observed
signal of reemergence. The most notable bias that appears in
the downscaled results is a tendency for the strongest reemer-
gence signal to appear 1–2 months late in the Northeast US
LME and the two EPUs.

4.1.2 Advection of water masses

The Nova Scotia Current is a major advective pathway for
cool, fresh surface water to enter the Northeast US LME (Du
et al., 2021; Grodsky et al., 2017). In Fig. 11, we show the
correlation between June sea surface salinity averaged over
a box on the Scotian Shelf just outside of the Northeast US
LME (black squares in the left panels of Fig. 11) and sea
surface salinity in following months. The panels in the top
row, from the analysis simulation, show evidence that salin-
ity anomalies starting on the Scotian Shelf are advected to
the eastern Gulf of Maine in 1–3 months and continue coun-
terclockwise around the Gulf before beginning to reach the
Mid-Atlantic Bight after around 7 months in, which is con-
sistent with the well-known direction and speed of the cir-
culation in the Gulf of Maine (Smith et al., 2001). Although
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Figure 9. RMSE of NWA12 and SPEAR ensemble mean SST anomaly forecasts (dark red and gray, respectively), spread of the model
ensemble members (light red and gray), and standard deviation of the observed anomalies (dashed black line). Letter markers on the lines
mark whether the line is for NWA12 (N) or SPEAR (S).

the Nova Scotia Current is strongest in the winter (Han et al.,
1997), we found the strongest advection signal for salinity
anomalies by starting with June Scotian Shelf salinity, per-
haps due to the better maintenance of surface properties dur-
ing stratified summer conditions; the influence of other cur-
rents, such as transport through the Northeast Channel, that
are stronger in the spring and summer (Smith et al., 2001);
or the process of advection by the cyclonic circulation in
the Gulf of Maine that strengthens during the summer and
autumn and reaches a maximum in December (Xue et al.,
2000).

In the second row of Fig. 11, we investigate whether the
downscaled forecast model can simulate this advection pro-
cess by performing a similar analysis, comparing lead-0 Sco-
tian Shelf salinity from forecasts initialized in June with fore-
cast sea surface salinity in subsequent months. The forecasts
do capture the advection to the Eastern Gulf of Maine in
the first few months. After lead 5 (November), the advection
seems to stall, with correlations remaining high in the Gulf
of Maine but not increasing in the MAB. Nevertheless, the
ability to roughly capture the lagged correlations associated
with this coastal advection likely contributes to the forecast
skill for surface salinity and temperature for a wide range
of lead times in forecasts initialized in June (in addition to
the reemergence process, which contributes to predictability
around leads 3–6).

By comparison, the 1° SPEAR model poorly predicts
the initial advection of salinity anomalies from the Scotian
Shelf. Although SPEAR does correctly predict that a salin-
ity anomaly from the Scotian Shelf advects to the Northeast
US LME, the advection is too fast (note that an anomaly
reaches Georges Bank by lead 3, September, in SPEAR ver-
sus around lead 7, January, in the analysis simulation), and
the low correlations indicate poor preservation of the ad-
vected anomaly. On the other hand, the diffuse and low cor-
relation in SPEAR is fairly consistent with the analysis sim-
ulation by lead 7.

4.1.3 Gulf Stream variability and trends driven by
climate change

Over the last 2 decades, most of the Northwest Atlantic
Ocean within the model domain has warmed substantially
faster than the rest of the global ocean, and the warming
has been particularly rapid along the Northeast US conti-
nental shelf (Glenn et al., 2015; Pershing et al., 2015; Sei-
dov et al., 2021; Wang et al., 2023). The rapid Northeast US
warming is consistent with the effect of projected slowing
of the overturning circulation associated with anthropogenic
climate change (Caesar et al., 2018; Saba et al., 2016) and
has been attributed to several factors, including a northward
shift of the western portion of the Gulf Stream (Chi et al.,
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Figure 10. Correlations between December (left panels) and March
(right panels) SST anomalies in different regions and SST anoma-
lies in subsequent months. Black triangles are plotted where the
Geiss et al. (2020) index exceeds 0.1; these triangles indicate where
the correlation is greater than expected from a first-order autore-
gressive process.

2021; W.-Z. Zhang et al., 2020) and increased shedding of
warm eddies (Gangopadhyay et al., 2019, 2020; Silver et al.,
2023). Recent warming trends have been the greatest in the
summer and autumn (Friedland et al., 2023), the same sea-
sons when the Gulf Stream is closest to the continental shelf
(Du et al., 2021) and sheds the most warm core eddies (Silver
et al., 2023).

In the Northeast US LME, the greatest benefit of down-
scaling for forecasts of surface temperature and salinity was
found in forecasts initialized in September and verifying over
the next several months (Figs. 2, 4). When broken down into
smaller regions (not shown), this improvement was greatest
in the MAB region, which is the nearest to the Gulf Stream.
Our hypothesis is that some of the improvement from down-
scaling stems from the improved simulation of Gulf Stream
variability and trends and the resulting impacts on surface
temperature and salinity both in the initial conditions and
during the forecast.

To test this hypothesis, we begin by examining SST trends
in the observations and in the two different sets of forecasts
(Fig. 12). For the forecasts, we evaluate the trend across ini-
tialization years from forecasts of a given lead time (or ver-
ification month); note that the trend is the same for the sea
surface temperature and the lead-dependent SST anomaly.
Consistent with Friedland et al. (2023), the linear warming

trend in the observations during 1993–2022 was the great-
est during late summer and autumn although the confidence
intervals are broad. Trends in the downscaled forecasts are
slightly higher than observed and are fairly consistent regard-
less of initialization or lead time, again with confidence in-
tervals that overlap the other forecasts and observations in
all cases (Fig. 12a). In the parent SPEAR forecasts, however,
most SST trends are lower than the observations, particularly
in winter and spring and in forecasts initialized in summer
and autumn when the predicted SST trends are actually neg-
ative (Fig. 12b). The trend is the most negative in September-
initialized forecasts of April SST. The periods of erroneously
low SST trends overlap with the periods of low or negative
SST forecast skill in the SPEAR model (Fig. 2).

In Fig. 13, we examine the spatial patterns of SST trends
in the Northeast US and Scotian Shelf regions from observa-
tions and September-initialized forecasts from the NWA12
and SPEAR models. The downscaled NWA12 forecasts have
the right SST trends during the initial month and continue
to correctly simulate the trends over the course of the fore-
casts. In forecasts of September (lead 0), the SPEAR fore-
casts have been correctly initialized with warming SSTs in
the Gulf of Maine, but SSTs in the initial month have been
incorrectly cooling in the Mid-Atlantic Bight. This cooling
trend becomes worse in subsequent forecast months and ex-
tends along the shelf break north of the typical Gulf Stream
position in February.

Finally, in Fig. 14, we examine the trends of
geostrophic current speeds in the AVISO satellite al-
timetry product provided by the Copernicus Marine Service
(https://doi.org/10.48670/moi-00148, EU Copernicus Ma-
rine Service Product, 2023a) and the two forecast models. A
northward shift of the Gulf Stream is evident in the satellite
observations in Fig. 14a, d, and g as a line of increased
current speed immediately north of a line of decreased
speed, particularly west of 67° W, which is both consistent
with other observations (Chi et al., 2021; W.-Z. Zhang et al.,
2020) and simulated remarkably well in the downscaled
forecasts (Fig. 14b, e, h). The parent forecasts, however,
have weak current speed trends that are more consistent with
a modest southward shift of the Gulf Stream (Fig. 14c, f, i).

These results support our hypothesis that the improved
forecasts in the downscaled model partially stem from im-
proved simulation of the Gulf Stream and its impact on vari-
ability and trends in the adjacent coast and shelf region. This
ability to match the observed Gulf Stream position and vari-
ability was also found by Ross et al. (2023a) in a reanalysis-
forced historical simulation and reflects well on the capa-
bilities of the NWA12 model. We emphasize that this re-
sult shows the benefits of high-resolution simulations rather
than a deficiency specifically with the SPEAR model. The
Gulf Stream is well known to require ocean resolution of
1/10° or finer to simulate properly (Chassignet and Garaffo,
2001; Chassignet and Xu, 2017) and the observed shift in
the Gulf Stream occurred over roughly a degree of latitude
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Figure 11. Correlation between June sea surface salinity in the southwest Scotian Shelf (within the black box in panels a, e, and i) and
sea surface salinity 1, 3, 5, and 7 months later from the analysis simulation (a–d), the June-initialized downscaled forecasts (e–h), and the
June-initialized SPEAR forecasts (i–l). The dotted lines show the boundary of the Northeast US LME. Areas overlaid with light-gray shading
are not statistically significant at the 90 % level using the Bretherton et al. (1999) method.

Figure 12. Linear trend of the Mid-Atlantic Bight average SST as
a function of the forecast initialization month and lead time. The
shading denotes 90 % confidence intervals.

(Wang et al., 2022), so there is no reason to expect that any
model with a resolution on the order of 1° for the ocean

would be able to accurately simulate the Gulf Stream shift
or the resulting temperature and salinity changes.

To illustrate the benefits of resolving Gulf Stream variabil-
ity at the event scale, in Figs. 15 and 16, we show output
from the nudged historical simulation and downscaled fore-
casts, respectively, for a pronounced warming event along
the Northeast US and Scotian Shelf in September to De-
cember of 2020. Conditions in September featured a weak
warm anomaly south of Newfoundland and west of the Grand
Banks, which strengthened over time and was joined by a
second warm anomaly to the west in November (top row of
Fig. 15). Both anomalies were associated with northward ex-
cursions of the Gulf Stream (middle row) and resulted in
increased temperature and salinity in the Northeast Chan-
nel (point 1, bottom-left panel) and near the Scotian Shelf
(point 2, bottom-right panel). In the Northeast Channel, tem-
perature and salinity was near-average at all depths during
September (indicated by same-colored plus symbols that are
near each other). As time progressed, the salinity increased
at all depths, deep waters became warmer, and near-surface
waters cooled but much less so than usual. By December
(square symbols), surface conditions were approximately 2°
warmer and 0.5 units saltier than average, and water at 105 m
depth was over 3° warmer and slightly less than 0.5 units
saltier than average. Near the Scotian Shelf (point 2), a sim-
ilar pattern was observed, with the most anomalous condi-
tions found in October. At depth, the temperature and salin-
ity increase from September to October was consistent with
intrusion water from the Gulf Stream (marked by GS), and
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Figure 13. Observed linear SST trends from the GLORYS12 reanalysis in September, October, and February (a, d, g), and SST trends in
September-initialized forecasts that verify in the same months from the NWA12 model (b, e, h) and the SPEAR model (c, f, i).

Figure 14. Observed linear geostrophic current speed trends from the AVISO satellite altimetry product in September, October, and Febru-
ary (a, d, g), and speed trends in September-initialized forecasts that verify in the same months from the NWA12 model (b, e, h) and the
SPEAR model (c, f, i).

October conditions were over 4° warmer and 1 unit saltier
than average.

This event was predicted remarkably well by the ensemble
mean of the downscaled forecasts initialized at the beginning
of September 2020 (Fig. 16). The mean forecast correctly
predicted the eastern warm SST anomaly in October 2020
joined by a western warm anomaly connected to a north-

ward Gulf Stream fluctuation in November 2020. The fore-
cast also correctly predicted increasing salinity at all levels
and warming at depth in the Northeast Channel (bottom-left
panel) and advection of Gulf Stream-like water off the Sco-
tian Shelf in October (bottom-right panel). Note that this plot
shows the raw forecast without the lead-dependent climatol-
ogy subtracted as in other plots.
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Figure 15. Temperature, salinity, and sea surface height during the period from September 2020 to January 2021 from the nudged downscaled
historical simulation. The top row shows SST anomalies. The middle row shows sea surface height, with the climatological position of the
0 cm height contoured in black. The bottom row shows temperature–salinity diagrams for the two locations marked with dots in the top-left
panel.

4.2 Effect of long-term warming trends

Because of the rapid increase in SSTs in the Northeast US
region, a portion of the model surface and bottom tempera-
ture forecast skill could simply come from the consistently
warming initial conditions and the greenhouse gas forcing in
the atmospheric forecasts. The persistence forecast used as a
baseline for comparison in the results would include the ef-
fects of warming initial conditions, but it would not include
warming that varies by season or the (likely negligible) com-
ponent of the warming trend that occurs during the course of
each 1-year forecast. To analyze the effect that discounting
the predictable trend would have on the skill of the down-
scaled SST forecasts for the Northeast US LME, in Fig. 17,
we compare the anomaly correlation for the raw downscaled
ensemble mean with the correlation after removing the lin-
ear trend from the forecasts and observations. Trends were
calculated separately for the forecasts and observations, and
separately for each month and each initialization month. The
correlation of the NWA12 model predictions with the ob-
servations is substantially reduced after detrending the fore-
casts and observations, especially after the first 1–2 months

of lead time, indicating that the linear trend is a substantial
part of the forecast skill. However, the linear trend also con-
tributes to the apparent skill of the persistence forecast, and
the difference between the model and persistence skill gen-
erally remains the same whether or not detrending is applied.
Patterns of correlation indicative of mechanisms behind pre-
diction skill, such as the reemergence of skill in forecasts
verifying in autumn (Sect. 4.1.1) also generally remain after
detrending. We also note that the trends that were removed
were fit to the full time series, which is considered an “un-
fair” method since this trend would not have been known in
the past. Bushuk et al. (2019) developed a “fair” method of
detrending that iterates over each retrospective forecast and
removes the trend calculated only using data available before
the start of each forecast. If this method was applied here,
the skill of the detrended forecasts would increase. How-
ever, we only show the unfair method of detrending since
the correlation metric is also an unfair calculation that uses
means and standard deviations calculated from the full time
series. Finally, we also emphasize that the origin of the fore-
cast skill, whether from a linear trend or dynamic variability,
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Figure 16. Temperature, salinity, and sea surface height during the period from September 2020 to January 2021 from the ensemble mean of
downscaled forecasts initialized at the beginning of September 2020. The top row shows SST anomalies. The middle row shows sea surface
height, with the climatological position of the 0 cm height contoured in black. The bottom row shows temperature–salinity diagrams for the
two locations marked with dots in the top-left panel. The bottom row shows raw forecast values without adjustment for the lead-dependent
bias.

is likely unimportant for most marine resource management
purposes.

4.3 Skill versus ensemble size

In this study, we evaluated the skill of two 10-member fore-
cast ensembles. Other high-resolution ocean prediction and
projection studies have typically relied on fewer ensemble
members or only one prediction, often due to the computa-
tional costs of running many ensemble members (Drenkard
et al., 2021). Jacox et al. (2020) found quickly diminish-
ing returns as the number of ensemble member forecasts of
the California Current System SST was increased. On the
other hand, features with a low signal-to-noise ratio, such as
the NAO, may only be skillfully predicted with much larger
ensembles (Dunstone et al., 2016; Scaife and Smith, 2018;
Strommen and Palmer, 2019). To assess the impact of en-
semble size on seasonal forecast skill in the NWA12 model,
we created 1000 bootstrap resamples (sampling from the 10
ensemble members for each initialization and lead time with
replacement) of the Northeast US. LME forecasts of the sur-

face and bottom temperature anomaly and surface salinity
anomaly for ensembles consisting of 1, 2, 4, and 10 mem-
bers. For each ensemble size, we calculated the median cor-
relation coefficient for the ensemble mean and the median
raw ensemble continuous ranked probability score (CRPS;
Bröcker, 2012), which evaluates the absolute error in the em-
pirical probability distribution of the ensemble. Both metrics,
shown in Fig. 18, indicate diminishing marginal improve-
ments in skill (higher correlation and lower CRPS) for all
three variables as the ensemble size is increased; the im-
provement from a single member to two members is sub-
stantial, while the improvement from 4 to 10 members is mi-
nor. This is consistent with the expected effect of ensemble
size on the estimation of the mean and CRPS (Leutbecher,
2018), and the results suggest that, at least for predictions
of these temperature and salinity anomalies, an ensemble
with approximately four members would provide a reason-
able compromise between computational costs and predic-
tion skill. However, we expect that forecasts of rare events,
such as marine heat waves, or nonlinear variables, such as
ocean chlorophyll, would still benefit from larger ensem-
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Figure 17. Correlation of downscaled Northeast US LME SST forecasts with (red) and without (blue) detrending of the forecasts and
observations for the downscaled forecasts (solid lines) and the anomaly persistence reference forecast (dashed lines).

bles (Jacox et al., 2020). A larger ensemble size may also in-
crease skill more if it was a multi-model ensemble, consisting
of downscaled predictions forced by different models and/or
using different models for downscaling rather than just an
ensemble of multiple runs from the same model. For exam-
ple, Brodie et al. (2023) found significantly higher skill in an
ensemble of 73 members from six different coarse-resolution
models compared to a much smaller ensemble of three coarse
or downscaled models.

4.4 Role of model resolution

The analysis showed that the high-resolution regional model
had significantly higher forecast skill than the global model
in many cases and that this skill comes from several sources
including better representation of reemergence, advection of
water masses, and Gulf Stream variability and trends. Given
the experimental design used in this study, however, where
the high-resolution model uses initial conditions from a dif-
ferent higher-resolution source, it is difficult to determine
how much of the increased forecast skill comes from the
higher-resolution initial conditions and how much comes

from evolving the initial conditions forward in time with
higher resolution. In an analysis for the US west coast, Ja-
cox et al. (2023) examined two sets of downscaled retro-
spective forecasts, one initialized from a high-resolution re-
analysis (similar to the present study) and the other initial-
ized from the coarse-resolution parent model. Initializing
from the high-resolution reanalysis yielded generally neg-
ligible improvements in forecast skill for surface and bot-
tom temperature aside from in the first month. The high-
resolution reanalysis did significantly improve the skill of
sea surface heights in their analysis. However, it is worth
noting that improved (bias-corrected) atmospheric forcing
was also included in their model runs initialized from the
high-resolution product. Overall, additional experiments are
needed to conclusively determine the role of the resolution of
the initial conditions in downscaled seasonal forecast skill.

As we noted in Sect. 2.4, the skill assessment could have
been biased in favor of the high-resolution model, which was
initialized with the same GLORYS reanalysis used as for the
observations in the assessment. On the other hand, the GLO-
RYS reanalysis has been repeatedly found to closely match
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Figure 18. Correlation (a–c) and ensemble continuous ranked probability score (CRPS; d–f) for NWA12 as a function of the size of the model
ensemble (colors). Plotted values are the medians of 1000 bootstrap samples of a given ensemble size from the full 10-member ensemble.

in situ observations (Amaya et al., 2023; Carolina Castillo-
Trujillo et al., 2023), which would suggest that comparing
against the GLORYS reanalysis should be similar to com-
paring against in situ observations. To determine whether any
bias could be an issue, we repeated the assessment of forecast
SST anomaly correlation using the OISST dataset (Reynolds
et al., 2007) instead of the GLORYS reanalysis (Fig. S1 in the
Supplement). Even though the SPEAR model derived its ini-
tial conditions by assimilating data from OISST, there is no
meaningful difference between the forecast skill relative to
GLORYS or OISST. In fact, in many cases, the downscaled
model has slightly higher prediction skill if OISST is used as
the source of observations. A lack of sensitivity to the dataset
used for verification was also found by Jacox et al. (2023),
who downscaled seasonal forecasts for the US west coast.

5 Conclusions

The high-resolution downscaled seasonal predictions yielded
a significant improvement to forecast skill for temperature
and salinity anomalies in the Northeast US Large Marine
Ecosystem and maintained or improved skill in other regions
along the North American east coast. Although this initial
experiment focused on predicting physical ocean conditions,
the dynamical drivers of the forecast skill suggest that skill-
ful predictions of biogeochemical features and connections
to living marine resources will also be possible. For example,
similar to the reemergence of temperature anomalies that was

skillfully predicted in the downscaled forecasts, Park et al.
(2019) found that nitrate anomalies in the Northwest Atlantic
also persist below the summer mixed layer and reemerge
in the winter and lead to predictable chlorophyll anomalies
in the following spring. Furthermore, the predictable advec-
tion of salinity by the cyclonic coastal circulation in the Gulf
of Maine (Fig. 11) suggests the potential to predict the ad-
vection of harmful algal blooms by the same current (Li
et al., 2014; Y. Zhang et al., 2020). The forecasts presented
here are the first step towards building connections between
predictable ocean temperature and salinity, biogeochemistry,
and living marine resources along the North American east
coast to develop critically needed large-scale marine ecosys-
tem predictions (Link et al., 2023).

Although the downscaled predictions of temperature and
salinity anomalies were skillful in many cases, some nontriv-
ial biases in the mean temperature and salinity were present
even in the downscaled predictions. These ocean biases could
be reduced by correcting biases in the atmospheric forcing
used to drive the regional model, and experimenting with
methods to correct these biases is a goal of future research.
Reducing biases in ocean mixing, whether by correcting the
wind forcing or adjusting the model parameterizations, may
be especially important for reducing bottom temperature bi-
ases. Correcting for biases in the forcing should reduce biases
in the ocean predictions but may not substantially improve
the prediction skill of anomalies (as found by Jacox et al.,
2023, along the US west coast). However, reducing ocean
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temperature and salinity biases will likely be important for
obtaining accurate predictions with coupled biogeochemical
model components.

Other improvements to the basic forecast model configura-
tion developed in this study may also be necessary to expand
the skill and capabilities of the model. For example, using
forecasts of river discharge rather than a climatology of river
discharge may be necessary for predicting nearshore salin-
ity biogeochemistry. Similarly, applying predicted conditions
for the ocean open boundaries rather than using a climatol-
ogy, could be necessary for predicting quickly propagating
sea level anomalies. Finally, full data assimilation rather than
nudging towards a reanalysis could improve prediction skill
through better initial conditions and also yield better proba-
bilistic forecasts and predictions of extreme events.
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