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“Ensemble weather prediction”
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Topics

Chaos theory & ensembles
Desired properties of ensembles
nitializing ensembles

Dealing with model error

— mostly in Carolyn Reynolds’ talk
Ensembles & hurricanes
Some product ideas



“Chaos”

The Lorenz (1963) model

% =a(y—z)
% =z(p—z2)—y
% =y — Bz

o, p, B arefixed.

Errors grow more quickly for some
initial conditions than others.

from Tim Palmer’s
2006 book chapter



Initial conditions for “Lothar” ensemble forecasts

Analysis

Ensemble forecast of the French / German storms (surface pressure)
Start date 24 December 1999 : Forecast time T+0 hours
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Lothar 42-h MISLP forecasts

deterministic Deterministic predictions | Verification

forecast — *
totally misses

Ensemble forecast of the Lothar storm (surface pressure)
Start date 24 December 1999: Forecast time T+42 hours
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Question: what constitutes a
“eood” ensemble forecast?
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Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown. Is this a sign of
a poor ensemble forecast?
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Ensembles and truth should be
draws from the same distribution

We need lots of samples from many situations to evaluate the characteristics of the ensemble.
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ref: Hamill, MWR, March 2001



Such ensemble forecasts will be “reliable”
(if there are enough members)
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Probability Density
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What other characteristics of
ensemble forecasts are important?
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“Sharpness”
measures the
specificity of

the probabilistic
forecast. Given

two reliable forecast
systems, the one
producing the
sharper forecasts

is preferable.

But: don’t want
sharp if not reliable.
Implies unrealistic

confidence. "
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Small-spread ensemble forecasts should have less

ensemble-mean error than large-spread forecasts.
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Why run forecasts from many initial
conditions?

Observations
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Why run forecasts from many initial

conditions?

these also have errors,
and observations aren’t

available everywhere \
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Why run forecasts from many initial
conditions?

hence the “initial condition”

will inevitably have some

error; it will inherit some
\ characteristics of the forecast
! error and the analysis error.

Data Forecast
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Why run forecasts from many initial

these also have errors,
and observations aren’t
available everywhere
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EnKF (Ensemble Kalman Filter)

naturally simulates uncertainty in observations, prior forecast
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Desirable properties
for ensembles of initial conditions

(1) true model state and ensemble are random draws
from the same distribution (same as before).

— i.e., ensemble samples “analysis uncertainty.”

— implies what you’d expect: larger differences between
members in data voids, or where prior forecast differences
were growing.

(2) differences between subsequent forecasts ought to
grow quickly enough that ensemble-spread
consistent with ensemble mean error.

— with perfect forecast model, (2) will happen naturally if
you take care of (1)



Error and Spread (units arbitrary)
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Spread should grow as quickly as error; part of spread growth from manner in
which initial conditions are generated, some due to the model (e.g., stochastic
physics, higher resolution increases spread growth). Focus on initial-condition
aspect.



_ (a) NCEP operational - (b) ECMWF operational _
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Global ensemble forecast models have systematic under-estimation of maximum
wind speed. Lesson: we’re far from conquering model error in NWP and ensembles.



“Model error”

Imperfections in the forecast model, due to:
— inadequate resolution

— unduly simple physical parameterizations
e deterministic may be inappropriate

— coding bugs

— lack of coupling, e.g., ocean-atmosphere

— use of limited-area nested model

* boundary-condition imperfections

* one-way nesting of outer domain, lack of ability for resolved
scales to interact with planetary scales

— etc.



Treating model error

* I[mprove your model

* [ncorporate stochastic parameterizations
where appropriate

 Multi-parameterization
* Multi-model

(Carolyn Reynolds will review further)



Ensemble products
(what we’re here to discuss)

* For the fields where we are starting to have
some confidence in ensemble guidance, what
can we do to convey that information in useful
ways to the forecaster and to the public?



Initialized 00 UTC
5 August 2009.

* indicates observed best-

track position.

Bi-variate normal distribution
fit to ensemble member
positions; contour encloses
90% of fitted probability.

GEFS/EnKF a bit north and

too fast.

NCEP has northward &
westward bias, few members

track.

ECMWEF tracks decent up to

Taiwan landfall

CMC has very large spread,
esp. after landfall.

UKMO too north,
too fast.
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(a) GFS/EnKF (b) NCEP
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Example:
Hurricane Bill

Initialized 00 UTC 19 August 20009.

All models slow, to varying extents.

GEFS/EnKF and ECMWEF tracks
decent.

UKMO, CMC have westward bias.

NCEP, FIM decent.
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(b) NCEP
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An experimental multi-model product

Dot area is proportional
to the weighting applied
to that member

® = ens. mean position
* = observed position
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Multi-model error (GEFS/EnKF,
ECMWE, FIM, UKMO, CMC, NCEP)

NCEP T382 GEFS/EnKF vs. Multi—Model
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Not much improvement from multi-model. Why?



Ensemble Position Error (km)
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Now some improvement, ~ 6 - 9 hours lead.



Questions

* Mine:
— Are ellipses, colors useful way of conveying
ensemble information?

— Are products like the multi-model synthesis shown
here potentially useful to forecasters?

* Yours
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X (2)

How the EnKF works:
2-D example

Prior Sample & P® Estimate
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Start with a random sample from bimodal distribution used
in previous Bayesian data assimilation example. Contours reflect
the Gaussian distribution fitted to ensemble data.



Review of Atlantic Basin activity

Atlantic Basin Storms, 31 Jul 2009 to 03 Oct 2009
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Review of Eastern-Pacific activity

Eos’rern P00|f|c Storms, 31 Jul 2009 to 03 Oc’r 2009
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Review of Western-Pacific activity

Wes’rern Pacific Storms, 31 Jul 2009 ’ro 03 Oct 2009
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