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ABSTRACT

A hybrid ensemble Kalman filter–three-dimensional variational (3DVAR) analysis scheme is demonstrated
using a quasigeostrophic model under perfect-model assumptions. Four networks with differing observational
densities are tested, including one network with a data void. The hybrid scheme operates by computing a set
of parallel data assimilation cycles, with each member of the set receiving unique perturbed observations. The
perturbed observations are generated by adding random noise consistent with observation error statistics to the
control set of observations. Background error statistics for the data assimilation are estimated from a linear
combination of time-invariant 3DVAR covariances and flow-dependent covariances developed from the ensemble
of short-range forecasts. The hybrid scheme allows the user to weight the relative contributions of the 3DVAR
and ensemble-based background covariances.

The analysis scheme was cycled for 90 days, with new observations assimilated every 12 h. Generally, it was
found that the analysis performs best when background error covariances are estimated almost fully from the
ensemble, especially when the ensemble size was large. When small-sized ensembles are used, some lessened
weighting of ensemble-based covariances is desirable. The relative improvement over 3DVAR analyses was
dependent upon the observational data density and norm; generally, there is less improvement for data-rich
networks than for data-poor networks, with the largest improvement for the network with the data void. As
expected, errors depend on the size of the ensemble, with errors decreasing as more ensemble members are
added. The sets of initial conditions generated from the hybrid are generally well calibrated and provide an
improved set of initial conditions for ensemble forecasts.

1. Introduction

Since Lorenz (1963, 1969) it has been recognized that
perfect numerical weather forecasts will always be un-
attainable; even the smallest of errors in the initial con-
dition will grow inexorably, eventually rendering any
single deterministic forecast useless. Rather than pin-
ning unrealistic hopes upon the accuracy of a single
numerical forecast, Epstein (1969) suggested an alter-
native goal for numerical weather forecasting, namely,
to estimate future states of the atmosphere’s probability
density function (pdf ) given an estimate of the initial
pdf. Typically, the pdf evolves from a relatively specific
distribution of initial states through increasingly more
diffuse states. At each forecast lead time, the user is
provided the probability of each model state occurring.

Explicitly computing the evolution of a complex
model’s pdf is not presently feasible, so an alternative,
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ensemble forecasting, or EF (Leith 1974), has been em-
braced. In EF, multiple, individual numerical forecasts
are generated from different sets of initial conditions
and/or different numerical model configurations. The
presumption underlying EF is that the subsequent sets
of forecasts may be taken as a representative random
sample from the evolved pdf. Ensemble forecasts have
been produced operationally in the United States and
Europe since late 1992 (Toth and Kalnay 1993, 1997;
Molteni et al. 1996).

Ensemble forecasts are potentially useful for more
than just making probabilistic weather forecasts; they
may also provide information that may be used during
data assimilation to generate more accurate initial con-
ditions. A key avenue to improving data assimilation is
accurate specification of the error statistics for the back-
ground forecast, also known as the ‘‘prior’’ or ‘‘first
guess’’ (Schlatter et al. 1999). These background error
statistics are used to determine the relative weighting
in the analysis between the background and the obser-
vations and the influence of observations away from the
observation locations. Many current and past opera-
tional data assimilation methods use long time series of
previous forecasts to develop spatially homogeneous
and temporally invariant approximations to background
error statistics. Schemes that use such statistics include
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optimum interpolation (e.g., Gandin 1963; Schlatter
1975; Lorenc 1981) and three-dimensional variational
data assimilation, or 3DVAR (Lorenc 1986; Parrish and
Derber 1992, hereafter PD92). Such simplified error sta-
tistics are necessitated by the computational difficulty
of specifying accurate flow-dependent error statistics.
Increasing computational resources, however, have
opened new possibilities, including the use of EFs for
estimating background errors.

The ensemble Kalman filter (EnKF, hereafter; see Ev-
ensen 1994; Evensen and van Leeuwen 1996; Houtek-
amer and Mitchell 1998; Burgers et al. 1998; Mitchell
and Houtekamer 2000) is one such possibility. The
EnKF consists of a set (or ensemble) of parallel short-
term forecasts and data assimilation cycles. This ensem-
ble differs from present operational ensembles in that
it is intended to provide a probablisitic forecast in the
short term rather than at the medium range. Since, in
the short term, forecast errors retain memory of the
initial (analysis) errors, the EnKF must therefore in-
corporate probabilistic information on analysis errors in
the generation of the ensemble. This is accomplished,
at least approximately, by providing a set of ‘‘per-
turbed’’ observations to each of the member assimilation
cycles. These perturbed observations consist of the ac-
tual observations plus distinct realizations of random
noise, whose statistics are consistent with the assumed
observational error covariances.

The EnKF is related to the classic Kalman filter (KF,
hereafter; Kalman and Bucy 1961), which provides the
optimal analysis in the case that the forecast dynamics
are linear and both background and observation errors
have normal distributions. The primary difference is that
the KF explicitly forecasts the evolution of the complete
forecast error covariance matrix using linear dynamics,
while the EnKF estimates this matrix from a sample
ensemble of fully nonlinear forecasts. The EnKF also
addresses the computational difficulty of propagating or
even storing the forecast error covariance matrix, whose
elements equal in number the square of the dimension
of the forecast model (number of grid points times num-
ber of variables). Under assumptions of linearity of error
growth and normality of observation and forecast errors,
it can be shown that in fact this scheme produces the
correct background error covariances as the ensemble
size increases (Burgers et al. 1998). For smaller ensem-
bles, however, the EnKF is rank deficient and its back-
ground covariance estimates suffer from a variety of
sampling errors, including spurious correlations at be-
tween widely separated locations. Alternative approach-
es to both the extended KF and covariance propagation
are reviewed in Ghil (1997).

The EnKF and KF approaches are being considered
along with other sophisticated and computationally in-
tensive approaches to data assimilation. Many opera-
tional centers are using or experimenting with using
four-dimensional variational data assimilation systems,
or 4DVAR (Thompson 1969; Daley 1991; Thépaut et

al. 1993; Courtier et al. 1994; Fisher and Courtier 1995;
Talagrand 1997). This technique finds the trajectory that
best fits past and present observations. Like the EnKF,
4DVAR is computationally intensive, requiring multiple
integrations of tangent-linear and adjoint versions of the
forecast model.

Houtekamer and Mitchell (1998, hereafter HM98)
first demonstrated the EnKF in a meteorological context.
They used a quasigeostrophic T21 spectral resolution,
three-level global model (Marshall and Molteni 1993)
under perfect-model assumptions. They demonstrated
that analysis errors decreased significantly as ensemble
size is increased. However, HM98 also noted problems
with the EnKF; first, with small ensemble sizes, the
approximation of the background error covariances from
the ensemble was poor. There were also issues of rank
deficiency, and background error covariances were bi-
ased when the member being updated was also used in
the estimate of the background covariances (see also
van Leeuwen 1999). To address this bias, HM98 pro-
posed the use of a ‘‘double EnKF,’’ whereby the n-mem-
ber ensemble was split up into two (n/2)-member sub-
sets. The covariance information from one of the subsets
was used in the data assimilation of the other subset. A
disadvantage of this approach was that estimates of the
background error statistics did not fully use all of the
available information from the ensemble, but rather only
half, exacerbating the sampling error and rank deficien-
cy problems in the background error covariance esti-
mate.

HM98 also found that it was desirable to exclude the
effects of observations greatly separated from the anal-
ysis location. This was done to deal with the spurious
correlations over long distances produced by a relatively
small ensemble and to address rank deficiency problems.
However, the use of a cutoff radius may introduce un-
desirable small-scale noise into the analysis, especially
when observations are sparse. These discontinuities occur
at points where adjacent grid points are updated using
different sets of observations, that is, where one or more
observations are included at one grid point and excluded
at the next. More recently, P. L. Houtekamer and H. L.
Mitchell (1999, personal communication) have attempted
to minimize this effect by multiplying the EnKF-supplied
background error covariances by a weighting factor that
decreases smoothly to zero at finite distance.

Over the short term, limited computational resources
may make it difficult or impossible to run an operational
EnKF with a large number of members. If so, it would
be appealing to have an algorithm that could still work
with smaller-sized ensembles and that could benefit
from whatever flow-dependent information this smaller
ensemble provides. In this paper we demonstate how to
construct a hybrid EnKF–3DVAR analysis scheme with
these attractive properties. This scheme uses back-
ground errors from an ensemble only to an extent ap-
propriate for the size of the ensemble by weighting flow-
dependent background error statistics from the ensemble
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together with the time-independent statistics from
3DVAR. The relative weighting can be adjusted to the
observational network and the size of the ensemble.

An ancillary goal of this paper is to demonstrate that
our hybrid scheme generates initial conditions that will
produce a superior ensemble of forecasts at longer lead
times. Currently, ensemble initial conditions for oper-
ational forecasts in the United States and Europe are
created by adding ‘‘dynamically constrained’’ noise
onto a control analysis (Toth and Kalnay 1993, 1997;
Molteni et al. 1996). We have previously demonstrated
that a perturbed observation (PO) ensemble, constructed
in a manner similar to the system to be demonstrated
here, may produce ensemble forecasts that are superior
to the dynamically constrained methods (Hamill et al.
2000, hereafter HSM00). The only difference between
the hybrid scheme described here and the previously
demonstrated PO approach is that the the data assimi-
lation method for the PO ensemble uses 3DVAR, so its
estimate of background errors does not include infor-
mation from the ensemble. For comparison, our tests
here will be measured against 3DVAR and PO ensemble
benchmarks.

We conduct our experiments here under a ‘‘perfect
model’’ assumption, whereby the same model used to
generate a true solution is used to generate forecasts.
We also use a quasigeostrophic channel model. Our re-
sults are thus not a direct analog to real-world numerical
weather prediction, where error growth due to model
deficiencies may be significant or greater than chaotic
effects due to initial state deficiencies (Tribbia and
Baumhefner 1988). Perfect-model experiments, how-
ever, do indicate how best to design an ensemble of
initial conditions in the absence of model error. We pre-
sume then that model error will be (and should be)
addressed as a further problem, be it through stochastic
physics (e.g., Buizza et al. 1999), through modeling of
errors in the data assimilation process (Mitchell and
Houtekamer 2000), through the use of perturbations to
model fixed fields and the land surface (Houtekamer
and Derome 1995; Hamill and Colucci 1998a), or
through other methods.

The rest of the article will be organized as follows.
We start with a brief review of the experimental design
and forecast model (section 2) and the simulation con-
cepts and the hybrid analysis scheme design (section 3).
We continue with an examination of the analysis error
characteristics (section 4) and subsequent probabilistic
forecast error characteristics (section 5). Section 6 con-
cludes the paper.

2. Experimental design

Our experiments begin from the assumption of a per-
fect model. Thus, a long reference integration of the
quasigeostrophic (QG) model provides the true state;
the assimilation and forecast experiments then use that

same model together with (imperfect) observations of
the true state.

The quasigeostrophic model is the same one used in
HSM00. It is a midlatitude, beta-plane, gridpoint chan-
nel model that is periodic in x (east–west), has imper-
meable walls on the north–south boundaries, and rigid
lids at the top and bottom. There is no terrain, nor are
there surface variations such as land and water. Pseudo–
potential vorticity (PV) is conserved except for Ekman
pumping at the surface, ¹4 horizontal diffusion, and
forcing by relaxation to a zonal mean state. The domain
is 16 000 km 3 8000 km 3 9 km; there are 129 grid
points east–west, 65 north–south, and eight model fore-
cast levels, with additional staggered top and bottom
levels at which potential temperature u is specified.
Forecast parameters are set as in HSM00.

All observations are presumed to be rawinsondes,
with u and y wind components and u observed at each
of the eight model levels. Observations are imperfect,
with errors drawn from the Gaussian distributions spec-
ified in HSM00. Moreover, the observation-error co-
variances are identical to those assumed by the data
assimilation scheme. Observations and new analyses are
generated every 12 h, followed by a 12-h forecast with
the QG model that serves as background at the next
analysis time.

The experiments are based on the four observational
networks shown in Fig. 1: a network with a data void
in the eastern third of the domain, a low-density network
(observations ;every 202 grid points), a moderate-den-
sity network (;every 102 grid points), and a high-den-
sity network (;every 52 grid points). Observations lo-
cations were selected sequentially and randomly, using
a one-dimensional Latin square algorithm (Press et al.
1992), which enforces a minimum distance between ob-
servations. The moderate-density network is a superset
of the low-density network, and the high-density net-
work a superset of the moderate. For simplicity, obser-
vations are located at the model grid points.

We will focus primarily on the analysis characteristics
during a 90-day interval, with a new analysis performed
every 12 h. Many of the statistics will be derived from
a subset of 20 of the times in this series, with the first
sample analysis taken 10 days after the start of the cycle
and with 4 days between each sample analysis. For these
20 initial times for the network with the data void, we
also generated an ensemble forecast to 5-days lead time
for purposes of evaluating the subsequent probabilistic
forecasts. Most of the experiments were conducted with
a 25-member ensemble, though 50- and 100-member
ensembles were generated for the network with the data
void in order to examine the influence of ensemble size.

3. The ensemble and hybrid assimilation schemes

An important property of this ensemble data assim-
ilation system is that the ensemble approximates a ran-
dom sample from the analysis pdf (HSM00). To this
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FIG. 1. Observation locations for four network configurations: (a)
network with data void, (b) low-density network, (c) moderate-den-
sity network, and (d) high-density network.

end, we follow the Monte Carlo procedure pictured in
Fig. 2; this procedure is identical to that of HM98 except
for the differences in the assimilation method used for
each member. We start with an ensemble of n analyses
at some time t0. These analyses were generated by add-
ing perturbations to a control analysis. The specific
method for how to generate this ensemble of initial con-
ditions at the start of the cycle is not crucial for the
long-term behavior; we chose to use perturbations that
were constructed from scaled differences between ran-
dom model states, following Schubert and Suarez
(1989). We then repeat the following three-step process
for each data assimilation cycle: 1) Make n forecasts to
the next analysis time, here, 12 h hence. These forecasts
will be used as background forecasts for n independent

analyses. 2) Given the already imperfect observations
at this next analysis time (hereafter called the ‘‘control’’
observations) generate n independent sets of perturbed
observations by adding random noise to the control ob-
servations. The noise is drawn from the same distri-
butions as the observation errors (see section 2). 3) Cal-
culate n objective analyses, updating each of the n back-
ground forecasts using the associated set of perturbed
observations. The data assimilation scheme is the hybrid
EnKF–3DVAR, described below.

For comparison, we will also include a single 3DVAR
control analysis receiving unperturbed observations.

Next, we describe the hybrid assimilation scheme
used for each ensemble member, and whose background
error covariances are a linear combination of the sample
covariances from an ensemble of (12 h) forecasts and
a stationary covariance matrix typically used in
3DVAR. We first briefly review the existing 3DVAR
scheme for the QG model; our implementation of
3DVAR follows broadly PD92 and is described in more
depth in Morss (1999). Notation below follows Ide et
al. (1997).

Let x be the model state vector, whose elements, for
the QG model, are the potential vorticity at each level
and grid point, along with the potential temperature at
each grid point of the top and bottom boundaries. Given
a set of observations yo and a background forecast xb,
the analysis xa under 3DVAR is that x which minimizes

1
b T 21 bJ(x) 5 [(x 2 x ) B (x 2 x )

2
o T 21 o1 (y 2 Hx) R (y 2 Hx)], (1)

where B is an approximation of the background error
covariances, R is the ‘‘observation error’’ covariance
matrix, and H is an operator that maps the model state
onto the observations (here assumed linear). In the per-
fect-model experiments conducted here, R is simply the
measurement error covariance; that is, the observations
are related to the true state xt by yo 5 Hxt 1 «, where
« is a normally distributed, random vector with zero
mean and covariance matrix R.

The analysis increment xa 2 xb satisfies

(I 1 BHTR21H)(xa 2 xb) 5 BHTR21(yo 2 Hxb); (2)

the derivation proceeds by differentiating J with respect
to x, setting the result equal to zero, and rearranging
terms. At each assimilation time, our implementation of
3DVAR solves (2) for xa 2 xb using a conjugate residual
descent algorithm (Morss 1999; Smolarkiewicz and
Margolin 1994). The analysis xa is then used as the
initial condition for a subsequent QG model forecast,
and that forecast becomes the background xb at the next
assimilation time. Following Morss (1999), the iteration
ends when the largest residual at any grid point is 5%
of its maximum initial residual.

Some key elements of any 3DVAR scheme are the
assumptions made to obtain the approximate back-
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FIG. 2. Illustration of cycle used in generating hybrid analyses for a hypothetical three-member
ensemble. Each member receives a different set of perturbed observations. Ensemble-based co-
variances are estimated using fellow members but excluding the member currently being processed.

ground covariances B. Here, B is assumed (a) to be fixed
in time, (b) to be diagonal in horizontal spectral coef-
ficients, and (c) to have separable horizontal and vertical
structures with simple vertical correlations. Assump-
tions a and b follow PD92; for assumption b, B is de-
fined by

B 5 SCST, (3)

where S is the transform from spectral coefficients to
grid points and C is the diagonal matrix of variances of
the spectral coefficients.

Though simple, this implementation of 3DVAR has
characteristics that suggest its performance in the QG
model is likely at least as good as the performance of
operational 3DVAR scheme for primitive equation mod-
els. Most importantly, the simple covariance model (3)
applies to potential vorticity. Because all other fields in
the model may be derived from the potential voriticity
through the usual quasigeostrophic relations, these sim-
ple covariances imply complex (and realistic) covari-
ances for streamfunction, winds, and temperatures.

We now turn to our hybrid EnKF–3DVAR scheme.
In this scheme, the approximate background covariances
are not given by (3), but by a weighted mean of (3) and
the sample covariance matrix Pb derived from the en-
semble, which is fully time dependent and spatially in-
homogeneous:

B 5 (1 2 a)Pb 1 aSCST. (4)

Details of the calculation of Pb for each ensemble mem-
ber are given below. By changing a from 0.0 to 1.0,
the analysis changes from using only flow-dependent,

ensemble-based error covariances to using the original
3DVAR covariances, that is, a ‘‘perturbed observation’’
analysis. The analysis increments for the hybrid scheme
are obtained through iterative solution of (2), just as
done in our implementation of 3DVAR. In contrast,
HM98 solve the Kalman gain equation directly. These
procedures are equivalent mathematically, as both min-
imize (1).

This implementation has a number of potential ad-
vantages; first, it allows us to evaluate combinations of
3DVAR and ensemble-based background statistics,
rather than relying strictly upon one or the other. Second,
ensemble-based statistics alone will be rank deficient
and subject to sampling errors. Blending in some
3DVAR statistics thus may ‘‘fill out’’ the covariance
matrix and ameliorate some of sampling error problems
encountered when using just ensemble-based statistics.
The appropriate weighting to each can be adjusted
through a.

Implementing this hybrid scheme requires an appro-
priate ensemble. We proceed as described in the begin-
ning of section 3: Each ensemble member is used in
turn as the background forecast in (2) [with B given by
(4)] and is updated based on distinct ‘‘perturbed’’ ob-
servations (Fig. 2). Within this scheme, some subtlety
is involved in the definition of the sample covariance
matrix Pb for the ensemble. As discussed earlier, the
simplest approach, in which Pb is the sample covariance
matrix using the entire ensemble and each member is
updated using the same background covariances, un-
derestimates the variance of the background errors
(HM98; van Leeuwen 1999). This underestimation can
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in turn degrade the performance of the EnKF (HM98).
To avoid this problem, HM98 used the double EnKF,
in which the ensemble is split into two halves and the
sample covariance from one half is used to update the
members from the other half.

Here, as suggested in HM98, we adopt another ap-
proach and calculate Pb for the ith member from the
sample that excludes the ith member, specifically,

n

b 21 b b b b TP 5 (n 2 2) (x 2 x )(x 2 x ) , (5)Oi j i j i
j51, j±i

where subscripts refer to ensemble members, n is the
number of members, and is the ensemble mean, againbx i

excluding the from the sample. We have not attemptedbxi

a comparison against the double EnKF, but we expect
(5) to produce a more accurate background covariance
estimate than the double EnKF since more ensemble
members are used.

4. Analysis characteristics

a. Analysis errors and ensemble calibration as
functions of a

In this section we evaluate the characteristics of anal-
ysis errors from ensembles for the different observa-
tional networks and for different values of a. We con-
sider two aspects of the quality of the ensemble: the
absolute magnitude of the error and the degree to which
the ensemble approximates a random sample from the
distribution of true states given past observations. We
shall measure errors in the L2 norm (streamfunction rms
error), the total energy norm, and the pseudo–potential
enstrophy norm, as in HSM00. These three norms em-
phasize different scales of motion, with the L2 norm
emphasizing the largest scales and enstrophy the smaller
scales. The extent to which the ensemble is drawn from
the correct distribution is evaluated using rank histo-
grams (Anderson 1996; Hamill and Colucci 1997,
1998b; HSM00), also known as Talagrand diagrams.

Figure 3 presents the error statistics for the different
networks using ensembles of size n 5 25 and four choic-
es of a. From Fig. 3, several points are notable. First,
analysis errors generally decreased as a decreased. Gen-
erally the lowest errors were at a 5 0.1, though for the
enstrophy norm in the moderate-density network, a 5
0.4 exhibited the lowest error of the a values tested.
The relative decrease of error depended upon the density
of observations and the norm; the ratio of analysis errors
at a 5 0.1 to a 5 1.0 in the L2 norm was around 40%
for the low-density network, near 50% for the network
with the data void, but less than 30% for the moderate-
and high-density networks. The greater improvement for
the sparse network and the network with the data void
suggests that when there are fewer observations relative
to the predominant wavelength (as is the case at the
mesoscale), the greater the improvement of the hybrid
over a standard 3DVAR.

Also note in Fig. 3 that the errors of the 3DVAR
control analysis were generally about the same as the
errors of the a 5 1.0 ensemble mean in the L2 norm,
but the ensemble mean errors were typically slightly
lower than control errors in the enstrophy norm. With
the exception of the low-density network, discussed be-
low, the result that the ensemble mean analysis at a 5
1.0 is competitive with or better than the control 3DVAR
analysis is similar to a result noted in HSM00. There
we found that the ensemble mean of the perturbed ob-
servation ensemble analyses was generally better than
the control analysis, especially in the enstrophy norm,
due to the smoothing of smaller-scale, less predictable
features. Here, the relative improvement over the
3DVAR control is perhaps less pronounced than that
noted in HSM00.

For most simulations, the ensemble mean error at a
5 1.0 is less than the error of the 3DVAR control sim-
ulation (Fig. 3). However, for the low-density network,
the error in the 3DVAR control appears to be substan-
tially lower than the error of the ensemble mean sim-
ulations at a 5 1.0. This result is most likely due to an
insufficiently short testing period; with so few obser-
vations in the low-density network, there were large
low-frequency variations in the relative skill of the anal-
yses, and the 90-day statistics may not have been rep-
resentative of the long-term mean performance. When
this comparison was repeated for a simulation almost
three times as long, the relative results were reversed;
ensemble mean error was much less than the 3DVAR
control error. Ideally, it would be best to conduct a cycle
of analyses over an even longer period of time to de-
termine the statistical significance of any difference.

Figure 3 also suggests the use of flow-dependent co-
variances in the data assimilation changes analysis char-
acteristics in other ways, in particular by reducing tem-
poral variations in analysis error. The standard deviation
of domain-average analysis error over the 90 days was
typically greater when a was larger, especially for the
network with the data void. This is further demonstrated
in Figs. 4a,b, a time series of analysis errors for the data
void at a 5 0.1 and a 5 1.0. As shown, one effect of
using primarily flow-dependent covariances (a 5 0.1)
was to reduce the errors during the long spells where
3DVAR errors (a 5 1.0) are especially high; that is,
days with high errors were improved more than days
with low errors. Also, the errors were reduced to a great-
er extent over the data void than over the data-rich re-
gion, as shown in Figs. 5a,b.

The effect of ensemble size on accuracy was exam-
ined only for the network with the data void. Ensembles
of size n 5 50 and n 5 100 were also computed. Figure
6 plots the ensemble mean errors in the L2 norm; other
norms were similar. There is a marked reduction in error
at a 5 0.1 for n 5 50 compared to n 5 25, and yet
slightly lower errors with n 5 100. For a 5 0.4, n 5
50 has slightly higher errors than n 5 25 members;
again, we expect this result is due to testing the scheme
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FIG. 3. Analysis errors as a function of norm, observational data density, and a. Solid lines denote average
of individual member’s errors over all n 5 25 members and over time series, excluding initial adjustment period
of 16 days. Dashed line indicates errors of ensemble mean, and error bars indicate 61 standard deviation from
ensemble mean over the time series of ensemble mean errors. Errors of the 3DVAR control analysis are marked
with a heavy dot.

over too short a period; in a longer integration, we ex-
pect n 5 50 to have the same or smaller error than n
5 25.

Strong spread–skill relationships were previously
documented in HSM00 for a perturbed observation en-

semble using a 3DVAR analysis scheme (equivalent to
this experiment when a 5 1.0). Here, it was found that
spread–skill correlations typically decreased as a de-
creased (not shown). We do not regard this as a problem
with the EnKF approach, however. As indicated by the
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FIG. 4. Time series of analysis errors in the L2 norm for the network
with the data void (n 5 25). Dots indicate errors of individual en-
semble members, and the solid line indicates errors of the ensemble
mean: (a) a 5 0.1; (b) a 5 1.0.

FIG. 5. Rms error of analyzed geopotential height (m) at level 4,
averaged over all case days and ensemble members: (a) a 5 0.1; (b)
a 5 1.0.

FIG. 6. Average ensemble mean analysis errors for network with
data void for ensembles of size 25, 50, and 100 in the L2 norm.

size of the error bars in Fig. 3, for a 5 0.1 there was
much less variation with time in the analysis error char-
acteristics. As indicated by Whitaker and Loughe
(1998), the spread–skill relationship is a strong function
of how much analysis errors vary with time. Hence, the
decreased spread–skill relationship is a natural conse-
quence of the EnKF reducing temporal variability in the
magnitude of the analysis error.

We now consider a second metric of analysis quality,
measuring the ability of the ensemble to sample from
the distribution of plausible analysis states. For a prop-
erly constructed ensemble, low analysis error should be
accompanied by uniformly distributed rank histograms
(Hamill and Colucci 1997, 1998b; HSM00). The rank
of an observation relative to a sorted n-member ensem-
ble of forecasts should be equally likely to occur in any
of the n 1 1 possible ranks if the observation and en-
semble sample the same underlying probability distri-
bution. Hence, over many samples, a histogram of the
ranks of observations relative to the sorted ensemble
should be approximately uniform.

Rank histograms of potential temperature at the mod-
el top boundary (uT) are shown in Fig. 7 for n 5 25.
Histograms for other variables are not shown, since uT

typically exhibited the worst nonuniformity. Notice the
rank histograms in Fig. 7 are relatively uniform except
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FIG. 7. Rank histograms for uT for various values of a and various observational networks; n 5 25 members.

at a 5 0.1, where the extreme ranks are more highly
populated. The nonuniformity of rank histograms for a
5 0.1 indicates there may be a problem with using small
a in conjunction with smaller-sized ensembles. This is
further illustrated in Fig. 8, which shows rank histo-
grams for the network with the data void for ensembles
of size n 5 50 and n 5 100. Problems with inappro-
priately high populations at the extreme ranks were cor-
rected for these larger-sized ensembles. As is demon-
strated below, with smaller ensembles, the ensemble-
based covariances are more likely to produce spurious
long distance correlations; these in turn induce inap-
propriately large analysis increments far from the orig-
inal observation. We believe these occasional large cor-
rections can produce a biased analysis that overpopu-
lates the extreme ranks of the histogram.

Note also that the extent of nonuniformity of the rank
histograms at a 5 0.1 are worse when there are more
observations. We hypothesize that this is because the
number of important degrees of freedom in the analysis
increases when more observations are included. Hence,
an ensemble of limited size does an increaingly poor

job of sampling the relevant subspace as the density of
observations is increased.

b. Single-observation analysis increments

Single-observation experiments are a typical bench-
mark for data assimilation schemes. Here, they are par-
ticularly useful for illustrating how analysis increments
depend on a and n. Figures 9 and 10 show increments
to u and y wind components induced by a single ob-
servation of the model level 7 (;320 hPa) zonal wind,
which is 1 m s21 higher than in the background (n 5
25). To generate the increments, the data-void network’s
cycling was interrupted after 20 days and the single
observation assimilated.

The resulting analysis increment for 3DVAR (a 5
1.0; Fig. 9) was relatively confined and produced u anal-
ysis increments in a dumbbell shape, similar to incre-
ments shown in PD92. As a decreased (Fig. 10), the
location of the maximum increment was actually shifted
to a few grid points east of the observation location, a
negative u increment was found just south of the ob-
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FIG. 8. Rank histograms for uT for various values of a using samples of size 25 from
ensembles of size n 5 50 and n 5 100 for the network with the data void.

FIG. 10. As in Fig. 9 but for a 5 0.1.

FIG. 9. The a 5 1.0 model level 7 analysis increments to (a) u
wind component, and (b) y wind component induced by a 11 m s21

single wind observation increment at model grid point (35, 33, 7) at
day 62 of the experiment. Contours are every 0.075 m s21 excluding
0.0 m s21. Dashed lines indicate negative values. Truth-run geopo-
tential heights are overplotted in thin contours; n 5 25 members.

servation location, and a spatially complicated y incre-
ment was observed. The background error estimate gen-
erated from the ensemble correlation structure suggested
that when stronger zonal winds were observed at that

location, the entire core of the jet should be displaced
farther north, weakening the zonal winds south of the
observation.

There are also positive increments in Fig. 10 in the
eastern part of the domain, far from the location of the
observation. Increasing the ensemble size to 100 mem-
bers (Fig. 11) demonstrates that these analysis incre-
ments far from the observation are largely spurious.
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FIG. 11. As in Fig. 10 but for n 5 100 members.

Additional ensemble members improve the background
error covariance estimates and reduce the increments at
distant points to near zero. Note also that the size of
the maximum increment decreased as a was decreased
and the ensemble size increased, consistent with having
a better background error estimate.

Given that the accuracy of a small-sized ensemble
may be degraded by spuriously large covariance esti-
mates between far-distant locations, it may be desirable
to filter the correlations generated by the ensemble, as
previously suggested by P. L. Houtekamer (1999, per-
sonal communication). We are currently testing a digital
smoothing filter with a Gaussian kernel designed by J.
Purser, an extension of the filter described in Hayden
and Purser (1995). We expect to describe the results of
this filter in future work.

5. Ensemble forecast error characteristics

We briefly demonstrate that in this perfect-model sce-
nario, an improved ensemble of analyses also results in
improved probabilistic forecasts. Five-day forecasts
were conducted from each of the n 5 25 ensemble initial
conditions for each of the 20 case days for the network
with the data void. No filtering of covariances was per-
formed here. Rank histograms for 1-, 3-, and 5-day fore-
casts are shown in Figs. 12a–p. The ensembles remain
generally well calibrated throughout the subsequent
forecast, though the extreme ranks are slightly more
highly populated for a 5 0.1.

The quality of the forecasts were evaluated using Bri-

er scores (Brier 1950; Wilks 1995), a measure of the
mean-squared error of probabilistic forecasts. Here, we
examine probabilities from the ensembles that the wind
speed at model level 4 is greater than 60 m s21. The
ensemble relative frequency is used to set probabilities;
for example, if 5 of the 25 members indicate winds
greater than 60 m s21, the probability is set to 20%.
Table 1 shows Brier scores for 1-, 2-, 3-, and 5-day lead
times for a 5 0.1, 0.4, 0.7, and 1.0. Brier scores are
lowest (best) for a 5 0.4, with a 5 0.1 and a 5 0.7
nearly as accurate, and a 5 1.0 much worse in skill.
The improvement of a 5 0.4, over a 5 0.1 and a 5
0.7, is not statistically significant using the test method
outlined in Hamill (1999), but the improve over a 5
1.0 is significant (p value ,0.001).

Another diagnostic for the skill of probabilistic
weather forecasts is the relative operating characteristic,
or ROC (Swets 1973; Mason 1982; Stanski et al. 1989).
The application to ensemble forecasts is thoroughly de-
scribed in HSM00. The ROC is a curve that indicates
the trade-off between type I errors (incorrect rejection
of null hypothesis) and type II (incorrect rejection of
alternative hypothesis) as various sorted members of the
ensemble are used as decision thresholds. Curves that
are farther up and to the left (more hits, less false alarms)
indicate better probabilistic forecasts. Figures 13a–d
show the ROCs for various a’s and lead times. The ROC
scores are similar to the Brier scores, indicating a slight
improvement of a 5 0.4 over a 5 0.1 and a 5 0.7,
with a 5 1.0 much worse. Note that if measured in
forecast lead time, the improvement of forecasts from
a 5 0.4 over a 5 1.0 is approximately 1 day; that is,
a day 2 probabilistic forecast at a 5 0.4 is as accurate
as a day 1 forecast at a 5 1.0.

As demonstrated earlier, larger ensembles reduce
analysis error. Does reduced error result in improved
probabilistic forecasts? A larger ensemble can help in
two ways; the larger sample naturally provides better
estimates of forecast probabilities, and it enhances the
accuracy of background error statisics estimated from
the ensemble, thus producing a reduced-error ensemble
of analyses. To isolate forecast improvements due only
to the second aspect, probabilistic forecasts will be gen-
erated from 25-member subsets of the 50- and 100-
member ensembles, so the ensemble size is equal in this
comparison. Table 2 shows Brier scores as in Table 1
for sets of 25-member forecasts drawn from ensembles
of size 25, 50, and 100. The reduced-error initial con-
ditions in the larger ensembles result in reduced-error
forecasts as well; the Brier scores for n 5 50 are lower
than for n 5 25, and n 5 100 is generally lower than
for n 5 50. ROC curves (not shown) are qualitatively
similar to the Brier scores.

6. Conclusions

A prototype hybrid 3DVAR–ensemble Kalman filter
analysis scheme was demonstrated here. This hybrid
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FIG. 12. Rank histograms for uT for forecasts using network with data void.

TABLE 1. Brier scores for Pr(wind speed .60 m s21), for n 5 25
members and various values of a.

Day a 5 0.1 a 5 0.4 a 5 0.7 a 5 1.0

1
2
3
5

0.0080
0.0151
0.0285
0.0558

0.0081
0.0122
0.0246
0.0518

0.0094
0.0147
0.0282
0.0601

0.0174
0.0258
0.0414
0.0813

scheme was shown to produce a reduced-error set of
analyses relative to using 3DVAR. This scheme allowed
the relative weighting a between ensemble-based co-
variances and 3DVAR covariances to be adjusted ac-
cording to the size of the ensemble to minimize the
subsequent error characteristics, to control problems
with spurious analysis changes far from the observation
location, and to preserve uniformity of rank. Generally,
low to moderate a’s (relatively equal weightings of en-
semble-based and 3DVAR background error covarianc-
es) were shown to be optimal for small ensembles, and
small a’s (primarily ensemble-based covariances) are
optimal for larger ensembles. Using higher a apparently

reduces both appropriate and inappropriate long dis-
tance correlations but forces correlations nearby the ob-
servations to be inappropriately isotropic. Use of a ,
0.1 was not described here, but caused serious problems
for small ensembles.

Networks with fewer observations showed more im-
provement over the 3DVAR control than networks with
higher densities of observations. More ensemble mem-
bers generally reduced the analysis errors by providing
a better estimate of flow-dependent background error
covariances.

The improved set of analyses generated an improved
ensemble of weather forecasts. When tested on the net-
work with the data void, use of improved covariances
resulted in about a 1-day gain in forecast lead time (e.g.,
optimized day 3 hybrid probabilisitic forecasts were as
skillful as a perturbed observation day 2 forecast).

Another appealing trait is that the algorithm is highly
parallelizable; in principle, individual member’s anal-
yses and forecasts may be computed in parallel on in-
dividual processors. If the computer architecture and
speed prohibit the use of a large ensemble, some incre-
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FIG. 13. Relative operating characteristic curves for P (wind speed . 60 m s21) for various values of a: (a) 1-, (b)
2-, (c) 3-, and (d) 5-day forecasts.

TABLE 2. Brier scores for Pr(wind velocity .60 m s21) for a 5
0.1 and 25-member ensembles taken from ensembles of n 5 25, 50,
and 100.

Day n 5 25 n 5 50 n 5 100

1
2
3
5

0.0080
0.0151
0.0285
0.0558

0.00636
0.0112
0.0203
0.0426

0.00658
0.0107
0.0189
0.0392

mental improvement over 3DVAR may still be possible
with a smaller ensemble since the flow-dependent co-
variances may still be used, but weighted less heavily.

This study was conducted under perfect-model as-
sumptions with a simple quasigeostrophic channel mod-
el. The quantitative improvements noted here may not
be realizable with a primitive equation model or under

circumstances where model error is nonnegligible.
However, this hybrid scheme should be an appealing
choice for further testing.

It is worth considering what would be required for
operational implementation of this scheme. Because the
cost function of the hybrid scheme differs from that of
3DVAR only in its treatment of the background co-
variance matrix B, much of the machinery of an existing
operational 3DVAR scheme would carry over un-
changed to the hybrid. In fact, the only modification
necessary in the 3DVAR scheme used here is to include
the sample covariance Pb in the subroutine that calcu-
lates the product Bx for arbitrary x; this is straightfor-
ward and computationally inexpensive. Operational
3DVAR schemes, however, use various preconditioners,
such as those based on B1/2, to accelerate the minimi-
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zation. When Pb is included in B, these preconditioners
are not available and futher research will be required to
find suitable (and feasible) preconditing techniques.

An ensemble that contains useful information on the
statistics of very short-range (6h) forecasts is also clear-
ly necessary. The best approach to constructing such an
ensemble remains a point of active debate, but, based
on experiments with the QG model (HSM00), we view
the PO ensemble framework as a promising candidate.
A very similar methodology, including some allowance
for model errors, is operational at the Canadian Mete-
orological Centre (Houtekamer et al. 1996).

Computationally, the hybrid scheme amounts to per-
forming n 3DVAR analyses, if we assume that condition
number for hybrid scheme can be reduced to that for
3DVAR. One potential mitigating factor is the ease with
which these n analyses could be parallelized. Moreover,
the n analyses need not be completed in the short win-
dow usually allowed for the calculation of the operation
3DVAR analysis; instead, a single hybrid analysis could
be performed in that window (to provide initial con-
ditions for a single ‘‘control’’ forecast), while the other
n 2 1 were spread over the interval between analysis
times.

We also recommend comparisons against other data
assimilation techniques such as 4DVAR and other im-
plementations of the EnKF. For comparisons with other
EnKF schemes, we can make some informed guesses
about when our hybrid may be more or less appropriate
than other EnKF approaches. If a center continues to
use an intermittent data assimilation approach and the
cost of code modification is a primary concern, this
hybrid approach is worth consideration, since modifi-
cations to 3DVAR are minimal. On the other hand, this
scheme is probably less suitable for continuous assim-
ilation of asynoptic observations. There, perhaps a
scheme like HM98 will prove to be more computation-
ally efficient, since it is designed to update the analysis
only in the region of new observations.
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