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Physical Science for Water Resources

Observe

Understand

Predict/Project

Use observations to advance
physical process understandin
and guide model developmen
for improved predictions

Understand, predict, and assess

severity of water related extreme

ﬁveg’rs such as droughts and
0ods

Analyze atmosphere, crygosphere,
land surface, and air-sed interface
processes

Assess, attribute errors, and
improve the National Water
Model

Provide scientfific information
necessary for.cost-effective
decision making



Co-management of drought and
flood risk

Uncertainty of water resource
observations and future
predictions

The viability of the historical
record for future water resource
planning

Is stationarity dead¢

Viterbo et al 2020

Hoerling et al. 2016




Use Inspired innovative research to
address water resource challenges

Extreme precipitation
Too much and foo little

Land surface
conditions

Long-term water
resource resillience




Atmospheric River (AR) Observations

We developed a porial of AR observations for forecasters and researchers to track
extreme events and verify model forecasts.
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https://psl.noaa.gov/arportal/

Evaluation of Significant AR Events

PSL uses a variety of observations to understand the meteorological conditions, forecast
performance, and impacts associated with exireme events.

Water Year (WY) 2017 and the CA Oroville Dam Incident during 2-11 Feb 2017

Highly anomalous precipitation occurred in N. CA. Precipitation resulted in excessive runoff into Damaged spillway at Lake Oroville in Feb.
Lake Oroville in Feb 2017 2017
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Evaluation of Forcings for Hydrologic Prediction

Advanced instrumentation is used to quantify uncertainty in traditional network observations
and for validation of model forecasts. This information is used to understand sources of error in

hydrologic prediction.
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Statistical Postprocessing of Meteorological
Inputs to Hydrological Forecast Systems

Raw GEFS forecast (11 members)

_ge=rT \ ’,’d\
- / /‘ -~ 1}
T - \//:’ Y, & \J
Y AIANA
7 77 N

== Observed precipitation
== Observed temperature
- = Observed freezing level

Z N
— F X
'Xg L
/ ‘\
XS
K AN

24 48 72 96 120 144 168 192 216 240 264 288 312 336
Lead times (h)

Post-processed forecast (33 members)

24 48 72 96 120 144 168
Lead times (h)

Extreme precipitation - predicting
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PSL is collaborating with River Forecast Centers to:

Develop methods to remove forecast biases and
Improve the representation of uncertainty in

ensemble forecasts

Investigate to what extent the improved skill of the
ensemble weather forecasts translates into more
skillful streamflow forecasts
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Development of Bulk Algorithm for R
Sensible and Latent Heat Fluxes

A bulk flux algorithm was developed to predict turbulent fluxes over dry and wet
bare soils (Grachev et al). The algorithm will be useful for improving land-
atmosphere parameterizations in forecast models.
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Evaluation of the National Water Model

PSL uses observations to understand key physical processes responsible for
model performance. This information is useful for validation and to guide future

model development.

Soil moisture

Streamflow
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Soll Moisture Forecasts of Opportunity

PSL has developed a way to identify “forecasts of opportunity” for soil moisture extremes. We do this
using Linear Inverse Modeling (LIM). Specifically, we use LIM to identify an optimal initial pattern of soil
moisture M and temperature T anomalies that yields particularly skillful forecasts.

Histogram of correlations of the optimal Soil moisture forecast errors at Healdsburg, CA

pattern with observed patterns in the historical for all initial conditions and for those from the

record. The vertical line demarcates the upper tercile of the histogram. Result are

upper tercile of the correlations. shown for both LIM and AR1-process forecasts.
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UFS Land Data Assimilation (DA) Development

PSL is developing a state of the art Ensemble Kalman Filter land Data Assimilation system for the UFS.

e NOAA is the only major national NWP center not using DA to update the soil moisture

in their global NWP model, and our snow DA is very outdated
e Introducing a modern land DA for the UFS is expected to improve UFS forecasts

Improving ensemble-based model uncertainty Modernising the snow data assimilation.
estimates, for use in soil moisture DA.
Fein SMC1 Error Stdev. v. SMC1 mean . . .
. . . ‘ —e— Opertational ensemble PSL developed an Optimal Interpolation snow analysis (as used by
Best estimate of the UFS soil moisture 00351 =e> Famm furcnsinbie leading international NWP centers). Initial results, based on a single
model uncertainty (from comparison o \g{ update, show clear improvement over current scheme. Now
independent data). o N working on an Ensemble Kalman Filter.
g 0.020 .
. Mean Diff. |RMSE
= 0.0154
Current UFS ensemble spread I Current UFS/GDAS analysis 57.7 243.6
underestimates the model soil moisture
uncertainty. 00057 PSL optimal interpolation 33.3 223.5
0000 550 0150 0.2'7 0350 0.450 0.550 0.650 0.750 0.850 0.950
i Table: Snow depth [mm] DA evaluation against independent station

Application of PSL's land model uncertainty scheme increases the ensemble observations, for 15 Dec, 2019.

spread in soil moisture. With larger model uncertainty, can proceed to develop
the Ensemble Kalman Filter updates to soil moisture.
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Evaporative Demand
(EDDI)

. Multi-scalar, near-real-time
drought index that leads the
US Drought Monitor, providing
a demand perspective

. Evaporative demand (Ep):

Lthirst of the atmosphere,”

.responds very quickly to
surface-moisture changes

ey
e O
Observe Undentond Predicl/Project

Drought Index

1-month EDDI categories for September 25, 2020
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Improving NOAA's S2S water predictions over the
contiguous United States

We use nudging to determine whether UFS precipitation forecasts can be improved
through improvements in the tropics.

Week 4 - WTR uvtp

Change in Week
4 precipitation
forecast skill

Water resource resilience - projecting Tulich, Dias 14
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Revealing Trends in the Water Resources E&
Historical Record

PSL is unique in having developed a 200-yr global atmospheric reanalysis dataset
at 3-hourly resolution (20CRv3). This dataset will be useful for studying long-term
changes in the water cycle.

Global Precipitable Water 2 —

in PSD’s new long-term 20CRv3
reanalysis (black curve)

and in other Reanalysis and
model datasets (colored
curves)

Water resource resilience — observing/understanding Compo, Slivinski, Whitaker, Sardeshmukh, McColl et al. 15



Million Acre-Feet

Millimeters

Causes for the Century-Long Decline in

Colorado River Flow
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PSL has developed methods to diagnose critical
drivers of hydroclimatological change at the

basin scale.

- Upper Colorado River flow has
declined 20% since 1900

- High resolution coupled global
maodels indicate half of the flow
reduction is due fo climate change

 Mostis due to reduction in pcpn

- Global land-atmosphere coupled
models indicate the warming effect
Is about 3%/°C
* lower sensitivity than inferred from
empirical models and most uncoupled
land models

- The challenge in anticipating future
Colorado River flow is how pcpn,
rather than sfcT, will change

Water resource resilience — observing/understanding/projecting

M. Hoerling, J. Barsugli, J. Eischeid, X. Quan 14



Understanding Extremes

“Stochastically Generated Skewed” (SGS) distributions are important to estimate
precipitation exiremes to inform water resource management and future risk based

decision making.

Precipitation P Vertical Velocity W

mmET AW “Predicted” change in extreme W
given the change in mean W:
using our SGS distribution theory,
where §,, is the skewness of W

Changes in
Mean

BLUE = increase
RED = decrease

Changes in Extremes
(90th percentile)
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Advances in Understanding of Processes
Controlling Projected Changes in Western U.S.
Precipitation and Their Impacts

Larger scale processes inherent in climate modeling combined with the mesoscale processes
control precipitation over complex terrain.
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Next Five Years Activities for Water
Resource Management

- Explaining the underlying causes of recent water extremes
and assessing their predictability

- Advancing the use of hydrometeorology observations,
including remotely sensed data for soil moisture and snow,
and modeling in watersheds across the U.S. to deliver
Improved scientific information for managing water
resources, for protecting lives and property, and for informing
preparedness

- Improving forecasts and early warning of hydrologic
extremes and their impacts, such as those associated with
droughts and floods, and evaluating model forecast
performance

____________________________________________________________________________________________________________________________________________|
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Warter Resource Management
Summary

« PSL uses a variety of observations to characterize the
fluxes of water between atmosphere, land, ice, and sea
components of the earth system

* This information is used to understand and assess model
oerformance at capturing extreme water events over
time scales ranging from hours to decades

« PSL further identifies key physical processes responsible for
Improving predictability
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