Descriptions of the models available in FACTS

AM3

Model:
AM3
Source:
Geophysical Fluid Dynamics Laboratory (GFDL)
Horizontal Resolution:
~1.9ox1.9o (192x92)
Vertical Resolution:
48 layers
References:
Donner, Leo J., Bruce Wyman, Richard S Hemler, Larry W Horowitz, Yi Ming, Ming Zhao, J-C Golaz, Paul Ginoux, Shian-Jiann Lin, M Daniel Schwarzkopf, John Austin, G Alaka, W F Cooke, Thomas L Delworth, Stuart Freidenreich, C Tony Gordon, Stephen M Griffies, Isaac M Held, William J Hurlin, Stephen A Klein, Thomas R Knutson, Amy R Langenhorst, H C Lee, Y Lin, B I Magi, Sergey Malyshev, P C D Milly, Vaishali Naik, Mary Jo Nath, R Pincus, Jeff J Ploshay, V Ramaswamy, Charles J Seman, Elena Shevliakova, Joseph J Sirutis, William F Stern, Ronald J Stouffer, R John Wilson, Michael Winton, Andrew T Wittenberg, and Fanrong Zeng, July 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 24(13), doi:10.1175/2011JCLI3955.1.

Bretherton, Christopher S., James R McCaa, Herve Grenier, 2004: A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Monthly Weather Review, 132, 864-882.

Donner, Leo J., Charles J Seman, Richard S Hemler, and Song-Miao Fan, 2001: A Cumulus Parameterization Including Mass Fluxes, Convective Vertical Velocities, and Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General Circulation model. Journal of Climate, 14(16), 3444-3463.

Golaz, J-C, M Salzmann, Leo J Donner, Larry W Horowitz, Yi Ming, and Ming Zhao, July 2011: Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3. Journal of Climate, 24(13), DOI:10.1175/2010JCLI3945.1.

Ming, Yi, V Ramaswamy, Leo J Donner, and V T J Phillips, 2006: A new parameterization of cloud droplet activation applicable to general circulation models. Journal of the Atmospheric Sciences, 63(4), DOI:10.1175/JAS3686.1.

Wilcox, E M., and Leo J Donner, 2007: The Frequency of Extreme Rain Events in Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model. Journal of Climate, 20(1), DOI:10.1175/JCLI3987.1

CAM4

Model:
CCSM4.0 CAM
Source:
National Center for Atmospheric Research (NCAR)
Horizontal Resolution:
~1.0oX1.0o (288x192)
Vertical Resolution:
25 layers
References:
Neale, R. B., et al., (2010a), Description of the NCAR Community Atmosphere Model (CAM 4.0), NCAR Tech. Note NCAR/TN-XXX+STR, 206 pp., Natl. Cent. for Atmos. Res, Boulder, Colo.

CAM5.1

Model:
CAM-5.1.1 (CESM-1.0)
Source:
National Center for Atmospheric Research (NCAR)
Horizontal Resolution:
~1.0oX1.0o (288x192)
Vertical Resolution:
25 layers
References:
Neale, R. B., et al., (2012), Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR, 289 pp., Natl. Cent. for Atmos. Res, Boulder, Colo.

CanESM2

Model:
CanESM2
Source:
Canadian Centre for Climate Modelling and Analysis
Horizontal Resolution:
~2.8oX2.8o (128x64)
Vertical Resolution:
35 layers
Large Ensemble Experiment References and Licensing

CESM1-CAM5

Model:
CESM1.0-CAM5
Source:
National Center for Atmospheric Research (NCAR)
Horizontal Resolution:
~1.0oX1.0o (288x192)
Vertical Resolution:
25 layers
References:
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M. Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and M. Vertenstein (2015), The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-13-00255.1, 96, 1333-1349.

ECHAM5

Model:
ECHAM5.4
Source:
Max Planck Institute for Meteorology (MPI)
Horizontal Resolution:
0.75ox0.75o (480x240)
Vertical Resolution:
31 layers
References:
Roeckner, E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and A. Tompkins, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

ESRL-CAM5HR

Model:
ESRL-CAM5HR
Source:
National Center for Atmospheric Research (NCAR)
Horizontal Resolution:
~0.5oX0.5o (576x384)
Vertical Resolution:
26 layers
References:
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M. Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and M. Vertenstein (2015), The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-13-00255.1, 96, 1333-1349.

ESRL-GFSv2

Model:
GFSv2 run at ESRL
Source:
NOAA/NWS Environmental Modeling Center (EMC)
Horizontal Resolution:
1.0ox1.0o (360x181)
Vertical Resolution:
64 layers
References:
Suranjana Saha, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, David Behringer, Yu-Tai Hou, Hui-ya Chuang, Mark Iredell, Michael Ek, Jesse Meng, Rongqian Yang, Malaquías Peña Mendez, Huug van den Dool, Qin Zhang, Wanqiu Wang, Mingyue Chen, and Emily Becker, 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185–2208. doi: http://dx.doi.org/10.1175/JCLI-D-12-00823.1

GEOS-5

Model:
GEOS-5
Source:
NASA Goddard Space Flight Center (GSFC)
Horizontal Resolution:
1.25ox1o (288x181)
Vertical Resolution:
72 layers
References:
Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I. Somg, and A. Eichmann, 2012: The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. Tech. rep., NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM2012-104606, Vol. 28, 117 pp.

Siegfried D. Schubert, Hailan Wang, Randal D. Koster, Max J. Suarez, and Pavel Ya. Groisman, 2014: Northern Eurasian Heat Waves and Droughts. J. Climate, 27, 3169–3207.

GFDL-CM3

Model:
GFDL-CM3
Source:
Geophysical Fluid Dynamics Laboratory (GFDL)
Horizontal Resolution:
2.5ox2.0o (144x90)
Vertical Resolution:
48 layers
References:
Griffies, S. M., and Coauthors, 2011: GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 3520–3544, doi: 10.1175/2011JCLI3964.1

Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J. Climate, 24, 3484–3519, doi: 10.1175/2011JCLI3955.1

Golaz, J.-C., M. Salzmann, L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 3145–3160, doi: 10.1175/2010JCLI3945.1

Sun, Lantao, Michael Alexander, and Clara Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990-2090 and its contribution to climate change, J. Climate, 31, 7823-7843, doi: 10.1175/JCLI-D-18-0134.1
(click on a model name to show the details of that model)